MESA 2: INNOVACIONES TECNOLÓGICAS EN EL TRATAMIENTO DE LA DIABETES MELLITUS TIPO 1

Autores/as

  • María Lidia Ruiz Morosini Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Adrián Proietti Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Matías Re Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Ana Schindler Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Gabriela Medek Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Alejandro De Dios Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Soraya Valeria Larreburo Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Karina Elisabet Mengoni Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Lázaro González Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Julieta Méndez Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Verónica Ojeda Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Gabriela Rosende Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Abel Weinmeister Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

DOI:

https://doi.org/10.47196/diab.v49i3.634

Palabras clave:

innovaciones tecnológicas, tratamiento, diabetes mellitus tipo 1

Resumen

El objetivo del tratamiento intensificado de la diabetes es conseguir y mantener un adecuado control metabólico sin incrementar el riesgo de hipoglucemias para evitar o demorar la aparición de las complicaciones crónicas. Mediante la insulinoterapia se pretende imitar, con la mayor precisión posible, la secreción normal de esta hormona, contando con dos estrategias cuya factibilidad ha sido largamente ensayada: el tratamiento basalbolo con dosis múltiples de insulina (MDI) y la infusión continua de insulina subcutánea (ICIS) mediante el uso de microinfusores1. Con este último método los niveles de insulina obtenidos se aproximarían más al perfil fisiológico2.

Biografía del autor/a

María Lidia Ruiz Morosini, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médica de Familia especializada en Diabetes; Directora Médica

Adrián Proietti, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Especialista en Medicina Interna, Médico Endocrinólogo

Matías Re, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médico Clínico, especializado en Diabetes

Ana Schindler, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médica especialista en Nutrición, especializada en Diabetes

Gabriela Medek, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Especialista en Medicina Interna, especializada en Diabetes

Alejandro De Dios, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médico, Especialista Universitario en Medicina Interna

Soraya Valeria Larreburo, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Clínica médica y diabetóloga

Karina Elisabet Mengoni, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médica especialista en Medicina Familiar, especializada en Diabetes

Lázaro González, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médico especialista en Nutrición, especializado en Diabetes

Julieta Méndez, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médica; Coordinadora del Programa Nacional de Prevención y Control de Personas con Diabetes Mellitus

Verónica Ojeda, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Head of the National Clinical Hospital Service

Gabriela Rosende, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Miembro del Comité de Graduados de la Sociedad Argentina de Diabetes

Citas

I. Salacinski AJ, Alford M, Drevets K, Hart S, Hunt BE. Validity and reliability of a glucometer against industry reference standards. Journal of Diabetes Science and Technology 2014; 8(1):95-9.

II. Klonoff DC. Noninvasive blood glucose monitoring. Diabetes Care 1997; 20(3): 433-7.

III. Koschinsky T, Jungheim K, Heinemann L. Glucose sensors and alternate site testing-like phenomenon: relationship between rapidblood glucose changes and glucose sensor signals. Diabetes Technol. Ther. 2003;5: 829-42.

IV. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulindependent diabetes mellitus. N. Engl. J. Med. 1993; 329:977-986

V. UK Prospective Diabetes Study Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998; 352(9131):837-53.

VI. Rabinovitch B, March WF, Adams RL. Noninvasive glucose monitoring of the aqueous humor of the eye: part I. Measurement of very small optical rotations. Diabetes Care 1982; 5: 254-8.

VII. So CF, Choi KZ, Wong TKS, Chung JWY. Recent advances in noninvasive glucose monitoring. Medical devices: evidence and research 2012; 5:45-52.

VIII. La Belle JT, Engelschall E, Lan K. A disposable tear glucose biosensor. Journal of Diabetes Science and Technology 2014; 8:109-16.

IX. Alexeev VL, Das S, Finegold DN, Asher SA. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clinical Chemistry 2004; 50:12 2353-60.

X. Mascarenhas P, Fatela B, Barahona I. Effect of diabetes mellitus type 2 on salivary glucose. A systematic review and metaanalysis of observational studies. PLOS ONE 2014; 9:1-15.

XI. Satish BN, Srikala P, Maharudrappa B. A tool in assessing glucose levels in Diabetes Mellitus. Journal of International Oral Health 2014; 6:114-17.

XII. Malik BH, Pirnstill CW, Coté GL. Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms. Journal of Biomedical Optics 2013; 18: 017007-1-9

XIII. Müller AJ, Knuth M, Nikolaus KS. First clinical evaluation of a new long-term subconjunctival glucose sensor. Journal of Diabetes Science and Technology 2012; 6:875-83.

XIV. Park HD, Lee KJ, Yoon HR, Nam HH. Design of a portable urine glucose monitoring system for health care. Comput Biol. Med. 2005; 35:275-86.

XV. Roberts K, Jaffe A, Verge C. Noninvasive monitoring of glucose levels: is exhaled breath the answer? Journal of Diabetes Science and Technology, 2012;6:659-64.

XVI. Khalil OS. Non-invasive glucose measurement technologies: an update from 1999 to the dawn of the new millennium. Diabetes Technol. Ther 2004; 6:5, 660-97.

XVII. Rohrscheib M, Robinson R, Eaton RP. Non-invasive glucose sensors and improved informatics. The future of diabetes management. Diabetes Obes. Metab. 2003; 5:280-4.

XVIII. Kottmann J, Rey JM, Luginbuhl J. Glucose sensing in human epidermis using mid-infrared photoacoustic detection. Biomedical Optics Express 2012; 3:667-80.

XIX. Kino S, Tanaka Y, Matsuura Y. Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe. Journal of Biomedical Optics 2014; 19:057010-1-3.

XX. Guo X, Mandelis A, Zinman B. Noninvasive glucose detection in human skin using wavelength modulated differential laser photothermal radiometry. Biomedical Optics Express 2012;3:3012-21.

XXI. Müller AJ, Knuth M, Nikolaus KS. Blood glucose self-monitoring with a long-term subconjunctival glucose sensor. Journal of Diabetes Science and Technology 2013; 7:24-34.

XXII. Baba JS, Cameron BD, Theru S, Coté GL. Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the Eye. J. Biomed. Opt. 2002; 7:321-8.

XXIII. Burmeister JJ, Arnold MA, Small GW. Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues. Diabetes Technol. Ther 2000; 2:5-16.

XXIV. Malchoff CD, Shoukri K, Landau JI, Buchert JM. A novel noninvasive blood glucose monitor. Diabetes Care 2002; 25:2268-75.

XXV. Yoo EH, Lee SY. Glucose biosensors: an overview of use in clinical practice. Sensors 2010; 10: 4558-76.

XXVI. Arnold MA, Small GW. Perspectives in analytical chemistry: noninvasive glucose sensing. Anal Chem. 2005; 77:5429-39.

XXVII. Ciudin A, Hernández C, Simó R. Non-invasive methods of glucose measurement: current status and future perspectives. Current Diabetes Reviews 2012; 8:48-54.

XXVIII. Oliver NS, Toumazou C, Cass AE, Johnston DG. Glucose sensors: a review of current and emerging technology. Diabet Med 2009; 26:197-210.

XXIX. Vaddiraju S, Burgess DJ, Tomazos I. Technologies for continuous glucose monitoring: current problems and future promises. Journal of Diabetes Science and Technology 2010; 4:1540-62.

XXX. Yum K, McNicholas TP, Mu B. Single-walled carbon nanotubebased near-infrared optical glucose sensors toward in vivo continuous glucose monitoring. J. Diabetes Sci. Technol 2013; 7: 72-87.

XXXI. Zhang W, Liu R, Zhang W, Jia H, Xu K. Discussion on the validity of NIR spectral data in non-invasive blood glucose Sensing. Biomedical Optics Express 2013; 4: 789-802.

XXXII. Liakat S, Bors KA, Xu L. Noninvasive in vivo glucose sensing on human subjects using mid-infrared light. Biomedical Optics Express 2014; 5:2397-2404.

XXXIII. Zhang Y, Wu G, Wei H. Continuous noninvasive monitoring of changes in human skin optical properties during oral intake of different sugars with optical coherence tomography. Biomedical Optics Express 2014; 5:990-99

XXXIV. Yeh SJ, Hanna CF, Khalil OS. Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements. Clinical Chemistry 2003; 49:924-34.

XXXV. Pleitez MA, Hertzberg O, Bauer A. Photothermal deflectometry enhanced by total internal reflection enables non-invasive glucose monitoring in human epidermis. Analyst 2015; 140:483-88.

XXXVI. Shao J, Lin M, Li Y. In vivo blood glucose quantification using raman spectroscopy. Plos One 2012; 7:1-6.

XXXVII. Ge X, Rao G, Kostov G. Detection of trace glucose on the surface of a semipermeable membrane using a fluorescently labeled glucose-binding protein: a promising approach to noninvasive glucose monitoring. Journal of Diabetes Science and Technology 2013; 7:4-12.

XXXVIII. MacKenzie HA, Ashton HS, Spiers S, et al. Advances in photoacoustic noninvasive glucose testing. Clin. Chem. 1999; 45:1587-95.

XXXIX. Purvinis G, Cameron BD, Altrogge DM. Noninvasive polarimetric-based glucose monitoring: an in vivo study. Journal of Diabetes Science and Technology 2011; 5:380-387.

XL. Adamson TL, Eusebio FA, Cook CB, LaBelle JT. The promise of electrochemical impedance spectroscopy as novel technology for the management of patients with diabetes mellitus. Analyst 2012; 137:4179-87.

XLI. Tao D, Adler A. In vivo blood characterization from bioimpedance spectroscopy of blood pooling. IEEE Transactions on Instrumentation and Measurement 2009; 58:3831-3838.

XLII. Sieg A, Guy RH, Delgado-Charro MB. Noninvasive glucose monitoring by reverse iontophoresis in vivo: application of the internal standard concept. Clin. Chem. 2004; 50:1383-90.

XLIII. Gourzi M, Rouane A, Guelaz R. Non-invasive glycaemia blood measurements by electromagnetic sensor: study in static and dynamic blood circulation. J. Med. Eng. Technol. 2005; 29:22-26.

XLIV. Tura A, Sbrignadello S, Cianciavicchia D, Pacini G, Ravazzani P. A low frequency electromagnetic sensor for indirect measurement of glucose concentration: in vitro experiments in different conductive solutions. Sensors (Basel). 2010; 10:5346-58.

XLV. Ramchandani N, Heptulla RA. New technologies for diabetes: a review of the present and the future. International Journal of Pediatric Endocrinology 2012; 2012:28,1-10.

XLVI. Gal A, Harman-Boehm I, Raykhman AM. Noninvasive glucose monitoring: a novel approach. Journal of Diabetes Science and Technology 2009; 3:253-260.

XLVII. Wentholt IM, Hoekstra JB, Zwart A, DeVries JH. Pendra goes dutch: lessons for the CE mark in Europe 2005; 48:1055-8.

XLVIII. Gandrud LM, Paguntalan HU, Van Wyhe MM, Kunselman BL, Leptien AD, Wilson DM, Eastman RC, Buckingham BA. Use of the cygnus glucowatch biographer at a diabetes camp. Pediatrics 2004;113:108-11.

XLIX. Zanon M, Sparacino G, Facchinetti A. Non-invasive continuous glucose monitoring with multi-sensor systems. Sensors 2013; 13:7279-95.

L. Bailey T, Bode BW, Christiansen MP, et al. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol. Ther. 2015; 17,11:787-94

Descargas

Publicado

21-12-2023

Cómo citar

Ruiz Morosini, M. L., Proietti, A., Re, M., Schindler, A., Medek, G., De Dios, A., Larreburo, S. V., Mengoni, K. E., González, L., Méndez, J., Ojeda, V., Rosende, G., & Weinmeister, A. (2023). MESA 2: INNOVACIONES TECNOLÓGICAS EN EL TRATAMIENTO DE LA DIABETES MELLITUS TIPO 1. Revista De La Sociedad Argentina De Diabetes, 49(3), 21–44. https://doi.org/10.47196/diab.v49i3.634

Artículos más leídos del mismo autor/a

1 2 3 4 5 > >>