Table 1: diabetes mellitus and physical activity. General aspects

Authors

  • Gabriela De Roia Ergonomics and Physical Activity Laboratory of the University of Flores, Autonomous City of Buenos Aires, Argentina
  • Andrés Florio Austral University Hospital, Autonomous City of Buenos Aires, Argentina
  • Natalia Garrido Santos Argentine Diabetes Society, Autonomous City of Buenos Aires, Argentina
  • Martín Maraschio Municipal Hospital of Azul Dr. Ángel Pintos, Province of Buenos Aires, Argentina
  • Natalia Mabel Blanco Debat School Hospital Dr. Ramón Madariaga, Posadas, Misiones, Argentina
  • Gabriela Edith Cuzziol Geriatric Hospital "Juana Francisca Cabral", Corrientes, Argentina
  • Santiago De Loredo Council of Physicians of the Province of Córdoba; Private University Hospital of Córdoba, Córdoba, Argentina
  • Rubén De Marco El Cruce Hospital, Florencio Varela, Province of Buenos Aires, Argentina
  • Mariano Adrián Forlino Medical Institute of Diabetes, Metabolism and Nutrition (IMED); Catholic University of Cuyo, San Luis, Argentina
  • Alejandra Carolina Maldini Santa Rosa Health Center, Santa Rosa, La Pampa, Argentina
  • Karina Elizabeth Mengoni Regional Hospital Antonio J. Scaravelli, Tunuyán, Mendoza, Argentina
  • Lucía Fiorella Pogio Dr. Juan A. Fernández General Acute Hospital, Autonomous City of Buenos Aires, Argentina

DOI:

https://doi.org/10.47196/diab.v52i3Sup.122

Keywords:

physical activity, exersice, diabetes, benefits, fitness, technology

Abstract

Physical activity is defined as any body movement produced by skeletal muscles that requires energy expenditure and results in energy expenditure higher than basal. Exercise is a planned, structured and repetitive physical activity. Regular exercise produces metabolic adaptations that improve blood glucose control increasing mitochondrial density and insulin signaling proteins, and cooperate to control lipid profile, blood pressure, psycological well-being, quality of life and depression in type 2 diabetes.

The physical condition or fitness is the set of attributes that allow a person to perform physical activity in an efficient manner. The cardiorespiratory fitness is defined as the ability of the circulatory, respiratory and vascular systems to provide oxygen to the muscles during sustained physical activity. High-intensity interval training (HIIT) promotes a better improvement of cardiorespiratory fitness than traditional aerobic exercise.  On the other hand, the thermogenesis of non-exercise activity (NEAT) refers to any energy expenditure that is produced by activities other than exercise, such as cooking. Small bursts of NEAT improve insulin management and lipolysis.

Author Biographies

Gabriela De Roia, Ergonomics and Physical Activity Laboratory of the University of Flores, Autonomous City of Buenos Aires, Argentina

PhD in Sciences of the Physical Exercise of the Movement; Director of the Laboratory of Ergonomics and Physical Activity of the University of Flores; Director of the National Program of Fight against Sedentary

Andrés Florio, Austral University Hospital, Autonomous City of Buenos Aires, Argentina

Pediatrician, Specialist in Sports Medicine

Natalia Garrido Santos, Argentine Diabetes Society, Autonomous City of Buenos Aires, Argentina

Medical specialist in Family Medicine, specialized in Diabetes

Martín Maraschio, Municipal Hospital of Azul Dr. Ángel Pintos, Province of Buenos Aires, Argentina

Medical specialist in Medical Clinic, specialized in Diabetes (SAD); Head of the Medical Clinic Service, Municipal Hospital of Azul Dr. Angel Pintos

Natalia Mabel Blanco Debat, School Hospital Dr. Ramón Madariaga, Posadas, Misiones, Argentina

Medical specialist in Internal Medicine, specialized in Diabetes (Argentine Society of Diabetes), School Hospital Dr. Ramón Madariaga

Gabriela Edith Cuzziol, Geriatric Hospital "Juana Francisca Cabral", Corrientes, Argentina

Medical specialist in Diabetes (Argentine Diabetes Society)

Santiago De Loredo, Council of Physicians of the Province of Córdoba; Private University Hospital of Córdoba, Córdoba, Argentina

Medical specialist in Internal Medicine, expert in Diabetes (Council of Physicians of the Province of Córdoba); Head of the Diabetes and Nutrition Service, Private University Hospital of Cordoba

Rubén De Marco, El Cruce Hospital, Florencio Varela, Province of Buenos Aires, Argentina

Specialist physician Endocrinology, specialized in Diabetes (SAD); Coordinator of the Endocrinology and Diabetes Area of El Cruce Hospital

Mariano Adrián Forlino, Medical Institute of Diabetes, Metabolism and Nutrition (IMED); Catholic University of Cuyo, San Luis, Argentina

Medical specialist in Internal Medicine, specialized in Diabetes

Alejandra Carolina Maldini, Santa Rosa Health Center, Santa Rosa, La Pampa, Argentina

Medical specialist in General Medicine and Nutrition, specialized in Diabetes (Argentine Society of Diabetes); Head of the Diabetes and Nutrition Service, Santa Rosa Health Center

Karina Elizabeth Mengoni, Regional Hospital Antonio J. Scaravelli, Tunuyán, Mendoza, Argentina

Medical specialist in Family Medicine, specialized in Diabetes (Argentine Society of Diabetes), Scaravelli Hospital

Lucía Fiorella Pogio, Dr. Juan A. Fernández General Acute Hospital, Autonomous City of Buenos Aires, Argentina

Medical specialist in Internal Medicine, specialized in Diabetes

References

Caspersen C, Powell K, Christenson GM. Public Health Rep 1985; 100(2): 126-131.

Ministerio de Salud de la República Argentina. Manual Director de Actividad Física y Salud de la República Argentina. Plan Nacional Argentina Saludable. Dirección de Promoción de la Salud y Control de Enfermedades No Transmisibles. 2013, 1º Ed: 12-14.

Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Advances in Physiology Education 2014; Vol 38, N 4, 308-314.

Little JP, Gillen JB, Percival ME, Safdar A, Tarnopolsky MA, Punthakee Z, Jung ME, Gibala MJ. Low-volume high-intensity interval training reduces hyperglycemia and increases skeletal muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol 2011; 111: 1554-1560.

Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E, Schaart G, Mensink M, Phielix E, van de Weijer T, Sels JP, Schrauwen P, Hesselink MK. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 2011; 59: 572-579.

Thompson D, Karpe F, Lafontan M, et al. Physical activity and exercise in the regulation of human adipose tissue physiology. Physiological Reviews 2012; Vol. 92 no. 1, 157-191.

Pi-Sunyer X. The Look AHEAD Trial: a review and discussion of its outcomes. Current Nutrition Reports 2014; 3(4):387-391. doi:10.1007/s13668-014-0099-x.

Swift DL, Johannsen NM, Lavie CJ, et al. The role of exercise and physical activity in weight loss and maintenance. Prog Cardiovasc Dis 2014 Jan-Feb; 56(4): 441-447.

Rubio-Pérez FJ, et al. Efecto de un programa de ejercicio físico individualizado sobre el perfil lipídico en pacientes sedentarios con factores de riesgo cardiovascular. Clin Investig Arterioscler 2017; 29 (5), 201-208.

Boraita A. La práctica deportiva mejora el perfil lipídico plasmático, pero ¿a cualquier intensidad? Rev Esp Cardiol 2004; 57(6): 495-8.

Álvarez C, Ramírez-Campillo R, Flores M, et al. Respuestas metabólicas inducidas por ejercicio físico de alta intensidad en mujeres sedentarias con glicemia basal alterada e hipercolesterolemia. Rev Med Chile 2013; 141: 1293-1299.

Wang Y, Xu D. Effects of aerobic exercise on lipids and lipoproteins. Lipids in Health and Disease 2017; 16:132.

Leon AS, Sanchez OA. Response of blood lipids to exercise training alone or combined with dietary intervention. Medicine & Science in Sports & Exercise 2001; S502-515.

Konstantinos T, Demosthenes B, Stavros AK, et al. Responses of blood lipids to aerobic, resistance, and combined aerobic with resistance exercise training: a systematic review of current evidence. Angiology 2009; 60(5): 614-632.

Racil G, Ben Ounis O, Hammouda O, et al. Effects of high vs moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. European journal Applied Phisilogy 2013; 113(10): 2531-2540.

Sullivan-Glenney S, Brockemer DP, Ng A, et al. Effect of exercise training on cardiac biomarkers in at-risk populations: a systematic review. Journal of Physical Activity & Health 2017.

Da Silva Nerya C, Arruda De Moraesb SR, Albino Novaesa K, et al. Effectiveness of resistance exercise compared to aerobic exercise without insulin therapy in patients with type 2 diabetes mellitus: a meta-analysis. Braz J Phys Ther 2017; 461.

Schwingshackl L, Missbach B, Dias S, et al. Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematicreview and network meta-analysis Diabetologia 2014; 57:1789-1797.

Misra A, Alappan, NK, Vikram NK, et al. Effect of supervised progressive resistance-exercise training protocol on insulin sensitivity, glycemia, lipids, and body composition in Asian Indians with type 2 diabetes. Diabetes Care 2008; 31:1282-1287.

Aspíroz-Sancho MT, Nuviala-Mateo RJ. Lípidos y ejercicio físico. Archivos de Medicina del Deporte 2002; 317-329.

Daniele TM, Bruin VM, Oliveira DS, et al. Associations among physical activity, comorbidities, depressive symptoms and health-related quality of life in type 2 diabetes. Arq Bras Endocrinol Metab 2013;57(1):44-50.

Rubin RR, Wadden TA, Bahnson JL, Blackburn GL, Brancati FL, Bray GA, Coday M, Crow SJ, Curtis JM, Dutton G, Egan C, Evans M, Ewing L, Faulconbridge L, Foreyt J, Gaussoin SA, Gregg EW, Hazuda HP, Hill JO, Horton ES, Hubbard VS, Jakicic JM, Jeffery RW, Johnson KC, Kahn SE, Knowler WC, Lang W, Lewis CE, Montez MG, Murillo A, Nathan DM, Patricio J, Peters A, Pi-Sunyer X, Pownall H, Rejeski WJ, Rosenthal RH, Ruelas V, Toledo K, Van Dorsten B, Vitolins M, Williamson D, Wing RR, Yanovski SZ, Zhang P; Look AHEAD Research Group. Impact of intensive lifestyle intervention on depression and health-related quality of life in type 2 diabetes: the Look AHEAD Trial. Diabetes Care 2014 Jun;37(6):1544-53.

Abbas Y, Abbasi NM, Vahidi R, et al. Effect of exercise on psychological well-being in T2DM. Journal of Stress Physiology & Biochemistry 2011; 7 (3): 132-142.

Edmunds S, Roche D, Stratton D, et al. Physical activity and psychological well-being in children with type 1 diabetes. Psychology, Health & Medicine 2007; 12 (3): 353-363.

Mutlu EK, Mutlu C, Taskiran H, et al. Association of physical activity level with depression, anxiety, and quality of life in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2015 Nov 1; 28(11-12):1273-8.

Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public health reports 1985; 100 (2):126-130.

Castillo-Garzón MJ, Ruiz JR, Ortega FB, Gutiérrez A. Anti-aging therapy through fitness enhancement. Clin Interv Aging 2006; 1(3):213-20.

Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes 2008; 32(1):1-11.

Lee D, Artero EG, Sui X, Blair SN. Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol. 2010 Nov; 24 (4 supplement): 27-35.

Carnethon MR, Sternfeld B, Schreiner PJ, Jacobs DR, Lewis CE, Liu K, Sidney S. Association of 20 year changes in cardirespiratory fitness with incident type 2 diabetes: The CARDIA Fitness Study. Diabetes Care 2009 (publish ahead of print, published online March 26, 2009. En: http://care.diabetesjournals.org/content/diacare/early/2009/03/26/dc08-1971.full.pdf

McAuley P, Myers J, Emerson B, Oliveira RB, Blue CL, Pittsley J, Froelicher VF. Cardiorespiratory fitness and mortality in diabetic men with and without cardiovascular disease. Diabetes Research and Clinical Practice 2009; 85, e30-e33.

Garber C, Blissmer B, Deschenes M, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine & Science in Sports & Exercise 2011; 1334-1359.

Gabriel B, Zierath J. The limits of exercise physiology: from performance to health. Cell Metabolism 2017; 25(5):1000-1011.

Hey-Mogensen M, Hojlund K, Vind B, et al. Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes. Diabetología 2010; 53:1976-1985.

Toledo F, Menshikova V, Ritov V, et al. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes 2007; 56:2142-2147.

Pinto P, Moura Rocco D, Okuda L, et al. Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta. Lipids in Health and Disease 2015; 14:109.

Ghafouri K, Cooney J, Bedford D, et al. Moderate exercise increases affinity of large very low-density lipoproteins for hydrolysis by lipoprotein lipase. J Clin Endocrinol Metab 2015; 100: 2205-2213.

Medeiros R, Gaique T, Bento-Bernardes T, et al. Aerobic training prevents oxidative profile and improves nitric oxide and vascular reactivity in rats with cardiometabolic alteration. J Appl Physiol 2016; 121: 289-298.

Seals DR, Edward F. Adolph distinguished lecture: the remarkable anti-aging effects of aerobic exercise on systemic arteries. J Appl Physiol 2014; 117: 425-439.

Fedewa M, Hathaway E, Higgins S, et al. Moderate, but not vigorous, intensity exercise training reduces C-reactive protein. Acta Cardiol 2017; 28:1-8.

Levine JA. Nonexercise activity thermogenesis (NEAT): environment and biology. Am J Physiol Endocrinol Metab 2004 May; 286(5):E675-85.

Levine JA, Schleusner SJ, Jensen MD. Energy expenditure of nonexercise activity. Am J Clin Nutr 2000; 72:1451-1454.

McCrady SK, Levine JA. Sedentariness at work: how much do we really sit? Obesity (Silver Spring) 2009; 17:2103-2105.

Levine JA, Lanningham-Foster LM, McCrady SK, et al. Interindividual variation in posture allocation: possible role in human obesity. Science 2005; 307:584-586.

Levine JA, McCrady SK, Lanningham-Foster LM, Kane PH, Foster RC, Manohar CU. The role of free-living daily walkingin human weight gain and obesity. Diabetes 2008; 57:548-554.

Harris AM, Lanningham-Foster LM, McCrady SK, Levine JA. Nonexercise movement in elderly compared with Young people. Am J Physiol Endocrinol Metab 2007; 292:E1207-E1212.

Levine J, Melanson EL, Westerterp KR, Hill JO. Measurement of the components of nonexercise activity thermogenesis. Am J Physiol Endocrinol Metab 2001; 281:E670-E675.

Evans BD, Rogers AE. 24-hour sleep/wake patterns in healthy elderly persons. Appl Nurs Res 1994; 7:75-83.

Calvin AD, Carter RE, Adachi T, et al. Effects of experimental sleep restriction on caloric intake and activity energy expenditure. Chest. 2013; 144:79-86.

Novak CM, Kotz CM, Levine JA. Central orexin sensitivity, physical activity, and obesity in diet-induced obese and dietresistant rats. Am J Physiol Endocrinol Metab 2006; 290:E396-E403.

Solomon TP, Thyfault JP. Type 2 diabetes sits in a chair. Diab Obes Metab 2013; 15:987-992.

Jordan JL, Holden MA, Mason EE, Foster NE. Interventions to improve adherence to exercise for chronic musculoskeletal pain in adults. Cochrane Database Syst Rev 2010; Issue 1, Art: CD005956.

Blum K, Oscar-Berman M, Bowirrat A, et al Neuropsychiatric genetics of happiness, friendships, and politics: hypothesizing homophily (“birds of a feather flock together”) as a function of reward gene polymorphisms. J Genet Syndr Gene Ther 2012; 3:1000112.

Keys A, Brozek J, Henschel A, Mickelson O, Taylor HL The biology of human starvation. University of Minnesota Press, Minneapolis, 1950.

Teske JA, Levine AS, KuskowskiM, Levine JA, Kotz CM. Elevated hypothalamic orexin signaling, sensitivity to orexin A and spontaneous physical activity in obesity resistant rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R889-R899.

Teske JA, Levine AS, KuskowskiM, Levine JA, Kotz CM. Elevated hypothalamic orexin signaling, sensitivity to orexin A and spontaneous physical activity in obesity resistant rats. Am J Physiol Regul Integr Comp Physiol 2006; 291:R889-R899.

Dunstan DW, Kingwell BA, Larsen R, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care 2012; 35:976-983.

Hamilton MT, Healy GN, Dunstan DW, Zderic TW, Owen N. Too little exercise and too much sitting: inactivity physiology and the need for new recommendations on sedentary behavior. Curr Cardiovasc Risk Rep 2008; 2:292-298.

Blackman KC, Zoellner J, Berrey LM, et al. Assesing the internal and external validity of mobile health physical activity promotion interventions: a systematic review using the RE-AIM framework. J Med Internet Res 2013;15 (10):e224.

Ryu S. Book review: mHealth: new horizons for health through mobile technologies: based on the findings of the second global Survey on eHealth. Health Inform Res 2012; 18(3):231.

Aitken M, Gauntlett C. Patient apps for improved healthcare: from novelty to mainstream. Parsippany (NJ): IMS Institute for Healthcare Informatics 2013. Disponible en: http://moodle.univ-lille2.fr/pluginfile.php/215345/mod_resource/content/0/IIHI_Patient_Apps_Report.pdf.

Klasnja P, Pratt W. Healthcare in the pocket: mapping the space of mobile-phone health interventions. J Biomed Inform 2012; 45(1):184-198.

Buijink AWG, Visser VJ, et al. Medical apps for smartphones: lack of evidence undermines quality and safety. Evid Based Med 2013; 18(3):90-92.

Middelweerd A, Mollee JS, van del Wal CN, Brug J, Te Velde SJ. Apps to promote physical activity among adults: a review and content analisys. Int J Behav Nutr Phys Act 2014; 11(1):97.

Velsen L, Beaujean DJ, Gemert-Pijnen JE. Why mobile health app overload drives us crazy, and how to restore the sanity. BMC Med Inform Decis Mak 2013 Feb 11; 13: 23.

IMS Institute For Health Informatics. Patient apps for improved healthcare. From novelty to mainstream. 2013. Oct.

Ledger D, McCaff Rey D. Inside wearables: how the science of human behaviour change off ers the secret to long-term engagement. Endeavour Partners, 2014. Disponible en: http://endeavourpartners.net/assets/Endeavour-Partners-Wearables-White-Paper-0141.pdf.

Zulman DM, Damschroder LJ, Smith RG, et al. Implementation and evaluation of an incentivized Internet-mediated walking program for obese adults. Transl Behav Med 2013; 3: 357-69.

Bravata DM, Smith-Spangler C, Sundaram V, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA 2007; 298: 2296-304.

Freak-Poli R, Cumpston M, Peeters A, Clemes SA. Workplace pedometer interventions for increasing physical activity.Cochrane Database Syst Rev 2013; 4: CD009209.

Eric AF, Benjamin AH, et al. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. Lancet Diabetes Endocrinol 2016; 4: 983-95.

Published

2023-01-10

How to Cite

De Roia, G., Florio, A., Garrido Santos, N., Maraschio, M., Blanco Debat, N. M., Cuzziol, G. E., De Loredo, S., De Marco, R., Forlino, M. A., Maldini, A. C., Mengoni, K. E., & Pogio, L. F. (2023). Table 1: diabetes mellitus and physical activity. General aspects. Journal of the Argentine Society of Diabetes, 52(3Sup), 03–13. https://doi.org/10.47196/diab.v52i3Sup.122

Issue

Section

Conferences and congresses

Most read articles by the same author(s)

1 2 > >>