Impact of preanalytical, analytical, and postanalytical phases on the evaluation of lipid profiles: a clinical approach

Authors

  • Isabel Cristina Llanos A.I. de Llano Hospital, Corrientes, Argentina
  • Claudia Alejandra Miño A.I. de Llano Hospital, Corrientes, Argentina
  • María Victoria Aguirre Biochemical Research Laboratory of the Faculty of Medicine (LIBIM), Corrientes, Argentina

DOI:

https://doi.org/10.47196/diab.v59i3Sup.1296

Keywords:

diabetes mellitus type 2, dyslipidemia, glycemic control, cardiovascular disease, laboratory phases

Abstract

Diabetes mellitus type 2 (DM2) is a non-communicable disease in continuous expansion. associated with unhealthy lifestyle habits, affecting up to 80% of patients with dyslipidemia. This condition is characterized by lipid abnormalities, including increased triglycerides and small, dense low-density lipoproteins (LDL), as well as decreased high-density lipoproteins (HDL). While proper glycemic control is important for improving lipid levels, especially in those with high triglycerides, dyslipidemia may persist, highlighting the need for effective management strategies.

These recommendations aim to provide guidance to physicians and biochemists on the pre-analytical, analytical, and post-analytical phases of lipoprotein laboratory tests, as well as to evaluate the feasibility of routinely conducting non-fasting lipid profiles in clinical laboratories.

Author Biographies

Isabel Cristina Llanos, A.I. de Llano Hospital, Corrientes, Argentina

Master's Degree in Health Sciences Research, Department of Biochemistry, Faculty of Medicine, National University of the Northeast (UNNE)

Claudia Alejandra Miño, A.I. de Llano Hospital, Corrientes, Argentina

Master's Degree in Health Sciences Research, Department of Biochemistry, Faculty of Medicine, National University of the Northeast (UNNE)

María Victoria Aguirre, Biochemical Research Laboratory of the Faculty of Medicine (LIBIM), Corrientes, Argentina

Professor of Biochemistry, Faculty of Medicine, National University of the Northeast (UNNE), Director of the Biochemical Research Laboratory of the Faculty of Medicine (LIBIM)

References

I. Carrasco-Sánchez FJ. La importancia del control de la dislipemia en el paciente con diabetes mellitus tipo 2. Editorial. Cuadernos de la redGDPS 2021. doi: 10.52102/control_dislipemia/art-1.

II. Secretaría. Desafíos del control lipídico en diabetes. Revista Diabetes 2022. Disponible en: https://www.revistadiabetes.org/complicaciones/desafios-del-control-lipidico-en-diabetes/. [Citado mayo de 2025].

III. Costa Gil JE, Spinedi E. La tormentosa relación entre las grasas y el desarrollo de la diabetes mellitus de tipo 2: actualizado. Parte 1. Rev Argent Endocrinol Metab 2017;54(3):109-23. doi. 10.1016/j.raem.2017.06.001.

IV. Gorbán de Lapertosa SB, Miño CA, Llanos IC, González CD. Asociación entre uricemia y síndrome metabólico en un centro hospitalario de Corrientes. Rev Soc Arg Diab 2023;56(3):83. doi: 10.47196/diab.v56i3.524. [Citado el 2 de mayo de 2025].

V. Martínez-Triguero ML, Veses-Martín S, Garzón-Pastor S, Mijares AH. Alteraciones del metabolismo de las lipoproteínas. Medicine 2012;11(19):1125-9. doi: 10.1016/s0304-5412(12)70438-9.

VI. Real JT, Ascaso JF. Metabolismo lipídico y clasificación de las hiperlipemias. Clin Investig Arterioscler 2021;33 (Suppl 1):3-9. doi: 10.1016/j.arteri.2020.12.008.

VII. Errico TL, Chen X, Martin Campos JM, Julve J, Escolà-Gil JC, Blanco-Vaca F. Mecanismos básicos: estructura, función y metabolismo de las lipoproteínas plasm. Clin Investig Arterioscler 2013;25(2):98-103. doi: 10.1016/j.arteri.2013.05.003.

VIII. Lamiquiz-Moneo I. Variaciones genéticas en los trastornos del metabolismo lipídico. Tesis de la Universidad de Zaragoza 2018. Disponible en: https://zaguan.unizar.es/record/77119/files/TESIS-2019-057.pdf. [Citado el 2 de mayo de 2025].

IX. Castillo DMM. Lipoproteínas de alta densidad (HDL-C) y su impacto en la enfermedad cardiovascular. Siacardio.com. 2023. Disponible en: https://www.siacardio.com/editoriales/prevencion-cardiovascular/lipoproteinas-de-alta-densidad-hdl-c-y-su-impacto-en-la-enfermedad-cardiovascular. [Citado el 2 de mayo de 2025].

X. Engler RJM, Brede E, Villines T, Vernalis MN. Lipoprotein(a) elevation. A new diagnostic code with relevance to service members and veterans. Fed Pract 2019;36(Suppl 7):S19-31.

XI. Langlois MR, Nordestgaard BG, Langsted A, Chapman MJ, Aakre KM, Baum H, et al. Quantifying atherogenic lipoproteins for lipid-lowering strategies: consensus-based recommendations from EAS and EFLM. Clin Chem Lab Med 2020;58(4):496-517. doi: 10.1515/cclm-2019-1253.

XII. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017;38(32):2459-72. doi: 10.1093/eurheartj/ehx144.

XIII. Cholesterol Treatment Trialists’ (CTT) Collaboration; Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010;376(9753):1670-81. doi: 10.1016/S0140-6736(10)61350-5.

XIV. Wu L, Parhofer KG. Diabetic dyslipidemia. Metabolism 2014;63(12):1469-79. doi: 10.1016/j.metabol.2014.08.010.

XV. Yanai H, Hirowatari Y, Yoshida H. Diabetic dyslipidemia: evaluation and mechanism. Glob Health Med 2019;1(1):30-5. doi: 10.35772/ghm.2019.01007.

XVI. Hatch C. Martin/Hopkins method to calculate LDL or ‘bad’ cholesterol outperforms other equations, study shows. Johns Hopkins Medicine. 2023 Disponible en: https://www.hopkinsmedicine.org/news/newsroom/news-releases/2023/06/martinhopkins-method-to-calculate-ldl-or-bad-cholesterol-outperforms-other-equations-study-shows. [Citado el 2 de mayo de 2025].

XVII. Samuel C, Park J, Sajja A, Michos ED, Blumenthal RS, Jones SR, et al. Accuracy of 23 equations for estimating LDL cholesterol in a clinical laboratory database of 5,051,467 patients. Glob Heart 2023;18(1):36. doi: 10.5334/gh.1214.

XVIII. Arrobas T, Guijarro C, Campuzano R, Rodríguez-Piñero M, Valderrama-Marcos JF, Botana-López AM, et al. Documento de consenso para la determinación e informe del perfil lipídico en laboratorios clínicos españoles. Rev Clin Med Fam 2023. doi: 10.55783/rcmf.160106.

XIX. Marston NA, Giugliano RP, Melloni GEM, Park J-G, Morrill V, Blazing MA, et al. Association of apolipoprotein B-containing lipoproteins and risk of myocardial infarction in individuals with and without aterosclerosis. Distinguishing between particle concentration, type, and content. Distinguishing between particle concentration, type, and content. JAMA Cardiol 2022;7(3):250-6. doi: 10.1001/jamacardio.2021.5083.

XX. Richardson TG, Sanderson E, Palmer TM, Ala-Korpela M, Ference BA, Davey Smith G, et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PLoS Medicine 2020 Mar 23;17(3). doi: 10.1371/journal.pmed.1003062.

XXI. Qin T, Ma T-Y, Huang K, Lu S-J, Zhong J-H, Li J-J. Lipoprotein (a)-related inflammatory imbalance: A novel horizon for the development of atherosclerosis. Curr Atheroscler Rep 2024;26(8):383-94. doi: 10.1007/s11883-024-01215-5.

Published

2025-11-01