Efectos del tratamiento antioxidante en la activación del eje hipotálamo-hipófiso-adrenal inducida por el consumo de dietas ricas en sacarosa

Autores/as

  • María Elisa Mercau Universidad de Yale, New Haven, Connecticut, Estados Unidos, Facultad de Medicina, Departamento de Bioquímica Humana, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
  • Juan Salvador Calanni Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
  • Marcos Aranda Northwestern University, Chicago, Estados Unidos, Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
  • Ruth Estela Rosenstein Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
  • Esteban Martín Repetto Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
  • Cora Beatriz Cymeryng Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina

DOI:

https://doi.org/10.47196/diab.v54i2.244

Palabras clave:

dieta rica en sacarosa, adenohipo?fisis, eje hipota?lamo-hipo?fiso-adrenal, estre?s oxidativo, inflamacio?n, a?cido lipoico, melatonina

Resumen

Introducción: dados los efectos pleiotrópicos de los glucocorticoides (GCs) sobre el metabolismo, los niveles excesivos y sostenidos de GCs circulantes tienen efectos deletéreos e incrementan la morbilidad y mortalidad cardiovascular.

Objetivos: estudiar el efecto de la terapia antioxidante (con ácido lipoico o melatonina) sobre la hiperactivación del eje hipotálamo-hipófiso-adrenal (HHA) en animales alimentados con dieta rica en sacarosa (DRS).

Materiales y métodos: se evaluó la actividad del eje HHA y se determinaron parámetros hormonales, de estrés oxidativo y de inflamación en la adenohipófisis de animales tratados con DRS durante tres semanas.

Resultados: los animales del grupo DRS mostraron mayores niveles circulantes de hormona adrenocorticotropa (ACTH, por su sigla en inglés) y corticosterona. En paralelo se detectó un aumento en la expresión del polipéptido precursor (proopiomelanocortina, POMC) y de ACTH en la adenohipófisis, donde también se observó un aumento de lipoperóxidos y proteínas nitradas en tirosina (daño oxidativo), un mayor número de macrófagos tisulares y un incremento en la producción de IL-1beta. El tratamiento antioxidante previno los cambios en estos parámetros. En particular la melatonina también normalizó la actividad del eje HHA y la expresión hipofisaria de POMC.

Conclusiones: la sobrecarga metabólica inducida por la administración de DRS genera daño oxidativo e inflamación en la adenohipófisis. La activación de los macrófagos tisulares producida en consecuencia podría impactar sobre los corticotropos hipofisarios e inducir su hiperfunción. La melatonina podría utilizarse como herramienta terapéutica para normalizar la actividad del eje HHA en modelos de obesidad por dieta.

Biografía del autor/a

María Elisa Mercau, Universidad de Yale, New Haven, Connecticut, Estados Unidos, Facultad de Medicina, Departamento de Bioquímica Humana, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina

Doctora en Ciencias Biológicas, Post-doctorando en el Departamento de Inmunobiología, Universidad de Yale, New Haven, Connecticut, Estados Unidos, Facultad de Medicina, Departamento de Bioquímica Humana, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET)

Juan Salvador Calanni, Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina

Lic. en Ciencias Biológicas, Tesista en el Departamento de Bioquímica Humana, Universidad de Buenos Aires

Marcos Aranda, Northwestern University, Chicago, Estados Unidos, Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina

Doctor en Ciencias Biológicas, Post-doctorando en la Universidad Northwestern, Chicago, Estados Unidos, Facultad de Medicina, Departamento de Bioquímica Humana, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET)

Ruth Estela Rosenstein, Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina

Doctora en Ciencias Químicas; Profesora Titular del Departamento de Bioquímica Humana de la Facultad de Medicina, Universidad de Buenos Aires

Esteban Martín Repetto, Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina

Doctor en Bioquímica; Investigador Adjunto del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Jefe de Trabajos Prácticos en el Departamento de Bioquímica Clínica de la Facultad de Bioquímica, Universidad de Buenos Aires

Cora Beatriz Cymeryng, Facultad de Medicina, Universidad de Buenos Aires, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas (CEFYBO-CONICET), Ciudad Autónoma de Buenos Aires, Argentina

Doctora en Ciencias Químicas; Investigadora Principal del Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Profesora Adjunta en el Departamento de Bioquímica Humana de la Facultad de Medicina, Universidad de Buenos Aires

Citas

I. Eckel RH, Grundy SM, Zimmet PZ. Seminar The metabolic syndrome; 2005.

II. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414(6865):782-787.

III. Lê KA, Tappy L. Metabolic effects of fructose. Curr Opin Clin Nutr Metab Care 2006 Jul; 9(4):469-75. Doi:10.1097/01.mco.0000232910.61612.4d.

IV. Dornas WC, de Lima WG, Pedrosa ML, Silva ME. Health implications of high-fructose intake and current research. Adv Nutr 2015; 6(6):729-737.

V. Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 2010; 299(5):E685-94. 6. Selenscig D, Rossi A, Chicco A, Lombardo YB. Increased leptin storage with altered leptin secretion from adipocytes of rats with sucrose-induced dyslipidemia and insulin resistance: effect of dietary fish oil. Metabolism 2010. Doi:10.1016/j.metabol.2009.09.025.

VI. Zago V, Lucero D, Macri E V, Cacciagiu L, Gamba CA, Miksztowicz V, Berg G, Wikinski R, Friedman S, Schreier L. Circulating very-low-density lipoprotein characteristics resulting from fatty liver in an insulin resistance rat model. Ann Nutr Metab 2014; 56(3):198-206.

VII. Chicco A, D’Alessandro ME, Karabatas L, Pastorale C, Basabe JC, Lombardo YB. Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet. J Nutr 2003; 133(1):127-133.

VIII. Arnaldi G, Scandali VM, Trementino L, Cardinaletti M, Appolloni G, Boscaro M. Pathophysiology of dyslipidemia in Cushing’s syndrome. Neuroendocrinology 2010; 92 Suppl 1:86-90.

IX. Peeke PM, Chrousos GP. Hypercortisolism and obesity. Ann N Y Acad Sci 1995; 771:665- 676.

X. Pasquali R, Vicennati V, Cacciari M, Pagotto U. The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann N Y Acad Sci 2006; 1083(1):111-28.

XI. Brindley DN. Role of glucocorticoids and fatty acids in the impairment of lipid metabolism observed in the metabolic syndrome. Int J Obes Relat Metab Disord 1995 May; 19 Suppl 1:S69-75.

XII. Paredes S, Ribeiro L. Cortisol: The villain in metabolic syndrome? Rev Assoc Med Bras (1992). 2014 Jan-Feb; 60(1):84-92. Doi:10.1590/1806-9282.60.01.017.

XIII. Pasquali R, Vicennati V, Cacciari M, Pagotto U. The hypothalamic-pituitary-adrenal axis activity in obesity and the metabolic syndrome. Ann N Y Acad Sci 2006; 1083:111-128.

XIV. Tannenbaum BM, Brindley DN, Tannenbaum GS, Dallman MF, McArthur MD, Meaney MJ. High-fat feeding alters both basal and stress-induced hypothalamic- pituitary-adrenal activity in the rat. Am J Physiol Endocrinol Metab 1997; 273(6). Doi:10.1152/ajpendo.1997.273.6.e1168.

XV. Martínez-Calejman C, Di Gruccio JM, Mercau ME, Repetto EM, Astort F, Sánchez R, Pandolfi M, Berg G, Schreier L, Arias P, Cymeryng CB. Insulin sensitization with a peroxisome proliferator-activated receptor γ agonist prevents adrenocortical lipid infiltration and secretory changes induced by a high-sucrose diet. J Endocrinol 2012; 214(3):267-76.

XVI. Mercau ME, Repetto EM, Pérez MN, Martínez-Calejman C, Sánchez-Puch S, Finkielstein CV, Cymeryng CB. Moderate exercise prevents functional remodeling of the anterior pituitary gland in diet-induced insulin resistance in rats: role of oxidative stress and autophagy. Endocrinology 2016;157(3):1135-1145. 18. Martínez-Calejman C, Di Gruccio JM, Mercau ME, Repetto EM, Astort F, Sánchez R, Pandolfi M, Berg G, Schreier L, Arias P, Cymeryng CB. Insulin sensitization with a peroxisome proliferator-activated receptor gamma agonist prevents adrenocortical lipid infiltration and secretory changes induced by a high-sucrose diet. J Endocrinol 2012; 214(3):267-276.

XVII. 19. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M. IKK-β links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11(2). Doi:10.1038/nm1185.

XVIII. 20. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112(12). Doi:10.1172/JCI200319246.

XIX. 21. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112(12):1821-1830.

XX. 22. Bloch-Damti A, Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid Redox Signal 2005; 7(11-12):1553-1567.

XXI. 23. Päth G, Scherbaum WA, Bornstein SR. The role of interleukin-6 in the human adrenal gland. Eur J Clin Invest 2000; 30 suppl 3:91-5. Doi:10.1046/j.1365-2362.2000.0300s3091.x.

XXII. 24. Villar SR, Ronco MT, Fernández-Bussy R, Roggero E, Lepletier A, Manarin R, Savino W, Pérez AR, Bottasso O. Tumor necrosis factor-α regulates glucocorticoid synthesis in the adrenal glands of trypanosoma cruzi acutely-infected mice. The role of TNF-R1. PLoS One 2013; 22,8(5). Doi:10.1371/journal.pone.0063814.

XXIII. 25. Katahira M, Iwasaki Y, Aoki Y, Oiso Y, Saito H. Cytokine regulation of the rat proopiomelanocortin gene expression in AtT-20 cells. Endocrinology 1998; 139(5). Doi:10.1210/endo.139.5.6005.

XXIV. 26. Kariagina A, Romanenko D, Ren SG, Chesnokova V. Hypothalamic-pituitary cytokine network. Endocrinology 2004; 145(1):104-12. Doi:10.1210/en.2003-0669.

XXV. 27. Chesnokova V, Melmed S, Angeles CL, Angeles L. Minireview: neuro-immuno-endocrine modulation of the hypothalamic-pituitary-adrenal (HPA) axis by gp130 signaling molecules. Endocrinology 2002; 143(5):1571-4.

XXVI. 28. Tkachenko I V, Jaaskelainen T, Jaaskelainen J, Palvimo JJ, Voutilainen R. Interleukins 1alpha and 1beta as regulators of steroidogenesis in human NCI-H295R adrenocortical cells. Steroids 2011; 76(10-11):1103-1115.

XXVII. 29. Asaba K, Iwasaki Y, Asai M, Yoshida M, Nigawara T, Kambayashi M, Hashimoto K. High glucose activates pituitary proopiomelanocortin gene expression: possible role of free radical-sensitive transcription factors. Diabetes Metab Res Rev 2007; 23(4):317:23. Doi:10.1002/dmrr.677.

XXVIII. 30. Takayasu S, Iwasaki Y, Nigawara T, Asai M, Yoshida M, Kageyama K, Suda T. Involvement of nuclear factor-κB and nurr-1 in cytokine-induced transcription of proopiomelanocortin gene in AtT20 corticotroph cells. Neuroimmunomodulation 2010; 17(2):88-96. Doi:10.1159/000258691.

XXIX. 31. Golbidi S, Badran M, Laher I. Diabetes and alpha lipoic acid. Front Pharmacol 2011; 2:69. Doi:10.3389/fphar.2011.00069.

XXX. 32. Uskoković A, Dinić S, Grdović N, Jovanović JA, Vidaković M, Poznanović G, Mihailović M. Beneficial effects of α-lipoic acid in diabetes- and drug-induced liver injury. Arch Biol Sci 2018. Doi:10.2298/ABS180503023U.

XXXI. 33. Flora SJS, Shrivastava R, Mittal M. Chemistry and pharmacological properties of some natural and synthetic antioxidants for heavy metal toxicity. Curr Med Chem 2013; 20(36):4540-74. Doi:10.2174/09298673113209990146.

XXXII. 34. Packer L, Kraemer K, Rimbach G. Molecular aspects of lipoic acid in the prevention of diabetes complications. Nutrition 2001; (10):888-95. Doi:10.1016/S0899-9007(01)00658-X.

XXXIII. 35. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, Fougerou C. Melatonin: pharmacology, functions and therapeutic benefits. Curr Neuropharmacol 2017; 15(3):434-443.

XXXIV. 36. Reiter RJ, Tan DX, Manchester LC, Paredes SD, Mayo JC, Sainz RM. Melatonin and reproduction revisited. Biol Reprod 2009; 81(3):445-456.

XXXV. 37. Zhang HM, Zhang Y. Melatonin: a well-documented antioxidant with conditional pro- oxidant actions. J Pineal Res 2014; 57(2):131-46. Doi:10.1111/jpi.12162.

XXXVI. 38. Reiter RJ, Tan D-X, Galano A. Melatonin reduces lipid peroxidation and membrane viscosity. Front Physiol 2014. Doi:10.3389/fphys.2014.00377.

XXXVII. 39. Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jiménez M, Qin L. Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 2016; 61(3):253-278.

XXXVIII. 40. Sharafati-Chaleshtori R, Shirzad H, Rafieian-Kopaei M, Soltani A. Melatonin and human mitochondrial diseases. J Res Med Sci 2017. Doi:10.4103/1735-1995.199092.

XXXIX. 41. Favero G, Franceschetti L, Bonomini F, Rodella LF, Rezzani R. Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int J Endocrinol 2017; 2017:1835195.

XL. 42. Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX. Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med 2009;15(1-2):43-50.

XLI. 43. Salido EM, Bordone M, De Laurentiis A, Chianelli M, Keller Sarmiento MI, Dorfman D, Rosenstein RE. Therapeutic efficacy of melatonin in reducing retinal damage in an experimental model of early type 2 diabetes in rats. J Pineal Res 2013; 54(2):179:89. Doi:10.1111/jpi.12008.

XLII. 44. Cymeryng CB, Dada LA, Podesta E. Effect of nitric oxide on rat adrenal zona fasciculata steroidogenesis. J. Endocrinol 1998; 158(2):197-203.

XLIII. 45. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2):351-8. Doi:10.1016/0003-2697(79)90738-3.

XLIV. 46. Aebi H. Catalase in vitro. Methods Enzymol 1984; 105:121-6. Doi:10.1016/S0076-6879(84)05016-3.

XLV. 47. Mercau ME, Astort F, Giordanino EF, Martínez-Calejman C, Sánchez R, Caldareri L, Repetto EM, Coso OA, Cymeryng CB. Involvement of PI3K/Akt and p38 MAPK in the induction of COX-2 expression by bacterial lipopolysaccharide in murine adrenocortical cells. Mol Cell Endocrinol 2014; 384(1-2):43-51.

XLVI. 48. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (Delta Delta C -T-) method. Methods 2001; 25(4):402-8. Doi:10.1006/meth.2001.1262.

XLVII. 49. Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 2005; 111(11):1448-1454.

XLVIII. 50. Grattagliano I, Palmieri VO, Portincasa P, Moschetta A, Palasciano G. Oxidative stress-induced risk factors associated with the metabolic syndrome: a unifying hypothesis. J Nutr Biochem 2008;19(8):491-504.

XLIX. 51. Fisher-Wellman K, Bloomer RJ. Macronutrient specific postprandial oxidative stress: relevance to the development of insulin resistance. Curr Diabetes Rev 2009; 5(4):228-238.

L. 52. Sartori C, Dessen P, Mathieu C, Monney A, Bloch J, Nicod P, Scherrer U, Duplain H. Melatonin improves glucose homeostasis and endothelial vascular function in high-fat diet-fed insulin-resistant mice. Endocrinology 2009; 150(12):5311-5317.

LI. 53. Cano-Barquilla P, Pagano ES, Jiménez-Ortega V, Fernández-Mateos P, Esquifino AI, Cardinali DP. Melatonin normalizes clinical and biochemical parameters of mild inflammation in diet-induced metabolic syndrome in rats. J Pineal Res 2014; 57(3):280-290.

LII. 54. Kitagawa A, Ohta Y, Ohashi K. Melatonin improves metabolic syndrome induced by high fructose intake in rats. J Pineal Res 2012; 52(4):403-413.

LIII. 55. Maiztegui B, Román CL, Gagliardino JJ, Flores LE. Impaired endocrine-metabolic homeostasis: underlying mechanism of its induction by unbalanced diet. Clin Sci 2018; 132(8):869-881. Doi:10.1042/cs20171616.

LIV. 56. Matulewicz N, Karczewska-Kupczewska M. Insulin resistance and chronic inflammation. Postep Hig Med Dosw 2016; 70(0):1245-1258.

LV. 57. Monteiro R, Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm 2010;2010. Disponible en: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&l ist_uids=20706689.

LVI. 58. Meshkani R, Vakili S. Tissue resident macrophages: key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Act 2016; 462:77-89.

LVII. 59. Benetti E, Chiazza F, Patel NS, Collino M. The NLRP3 inflammasome as a novel player of the intercellular crosstalk in metabolic disorders. Mediat Inflamm 2006; 2013:678627.

LVIII. 60. He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci 2013; 41(12):1012-1021.

LIX. 61. Netea MG, van de Veerdonk FL, Kullberg BJ, Van der Meer JWM, Joosten LAB. The role of NLRs and TLRs in the activation of the inflammasome. Expert Opin Biol Ther 2008; 8(12):1867-72. Doi:10.1517/14712590802494212.

LX. 62. Fujiwara K, Yatabe M, Tofrizal A, Jindatip D, Yashiro T, Nagai R. Identification of M2 macrophages in anterior pituitary glands of normal rats and rats with estrogen-induced prolactinoma. Cell Tissue Res 2017; 368(2):371-378.

LXI. 63. Yi WJ, Kim TS. Melatonin protects mice against stress-induced inflammation through enhancement of M2 macrophage polarization. Int Immunopharmacol 2017; 48:146-158.

LXII. 64. Deiuliis JA, Kampfrath T, Ying Z, Maiseyeu A, Rajagopalan S. Lipoic acid attenuates innate immune infiltration and activation in the visceral adipose tissue of obese insulin resistant mice. Lipids 2011; 46(11):1021-32. Doi:10.1007/s11745-011-3603-8.

LXIII. 65. Li G, Fu J, Zhao Y, Ji K, Luan T, Zang B. Alpha-lipoic acid exerts anti-inflammatory effects on lipopolysaccharide-stimulated rat mesangial cells via inhibition of nuclear factor kappa B (NF-κB) signaling pathway. Inflammation 2015; 38(2):510-9. Doi:10.1007/s10753-014- 9957-3.

LXIV. 66. Mercau ME, Calanni JS, Aranda ML, Caldareri LJ, Rosenstein RE, Repetto EM, Cymeryng CB. Melatonin prevents early pituitary dysfunction induced by sucrose-rich diets. J Pineal Res 2019; 66(2):e12545.

LXV. 67. Konakchieva R, Mitev Y, Almeida OF, Patchev VK. Chronic melatonin treatment counteracts glucocorticoid-induced dysregulation of the hypothalamic-pituitary-adrenal axis in the rat. Neuroendocrinology 1998; 67(3):171-180.

LXVI. 68. Konakchieva R, Mitev Y, Almeida OFX, Patchev VK. Chronic melatonin treatment and the hypathalamo-pituitary-adrenal axis in the rat: Attenuation of the secretory response to stress and effects on hypothalamic neuropeptide content and release. Biol. Cell 1997. Doi:10.1016/S0248-4900(98)80163-9.

LXVII. 69. Detanico BC, Piato ÂL, Freitas JJ, Lhullier FL, Hidalgo MP, Caumo W, Elisabetsky E. Antidepressant-like effects of melatonin in the mouse chronic mild stress model. Eur J Pharmacol 2009; 607(1-3):121-5. Doi:10.1016/j.ejphar.2009.02.037.

LXVIII. 70. Zhong LY, Yang ZH, Li XR, Wang H, Li L. Protective effects of melatonin against the damages of neuroendocrine-immune induced by lipopolysaccharide in diabetic rats. Exp Clin Endocrinol Diabetes 2009; 117(9):463-469.

LXIX. 71. Zhou J, Wang D, Luo X, Jia X, Li M, Laudon M, Zhang R, Jia Z. Melatonin receptor agonist piromelatine ameliorates impaired glucose metabolism in chronically stressed rats fed a high-fat diet. J Pharmacol Exp Ther 2018; 364(1):55-69.

LXX. 72. Zhou J, Zhang J, Luo X, Li M, Yue Y, Laudon M, Jia Z, Zhang R. Neu-P11, a novel MT1/MT2 agonist, reverses diabetes by suppressing the hypothalamic-pituitary-adrenal axis in rats. Eur J Pharmacol 2017; 812:225-233.

LXXI. 73. Iwasaki Y, Nishiyama M, Taguchi T, Kambayashi M, Asai M, Yoshida M, Nigawara T, Hashimoto K. Activation of AMP-activated protein kinase stimulates proopiomelanocortin gene transcription in AtT20 corticotroph cells. Am J Physiol Metab 2007; 292(6). Doi:10.1152/ajpendo.00116.2006.

LXXII. 74. Chen M, Wang Z, Zhan M, Liu R, Nie A, Wang J, Ning G, Ma Q. Adiponectin regulates ACTH secretion and the HPAA in an AMPK-dependent manner in pituitary corticotroph cells. Mol Cell Endocrinol 2014; 383(1-2):118-25. Doi:10.1016/j.mce.2013.12.007.

LXXIII. 75. Asaba K, Iwasaki Y, Yoshida M, Asai M, Oiso Y, Murohara T, Hashimoto K. Attenuation by reactive oxygen species of glucocorticoid suppression on proopiomelanocortin gene expression in pituitary corticotroph cells. Endocrinology 2004; 145(1):39-42.

LXXIV. 76. Tuomi T, Nagorny CLF, Singh P, Bennet H, Yu Q, Alenkvist I, Isomaa B, Östman B, Söderström J, Pesonen A-K, Martikainen S, Räikkönen K, Forsén T, Hakaste L, Almgren P, Storm P, Asplund O, Shcherbina L, Fex M, Fadista J, Tengholm A, Wierup N, Groop L, Mulder H. Increased Melatonin Signaling Is a Risk Factor for Type 2 Diabetes. Cell Metab 2016; 23(6):1067-1077.

Descargas

Publicado

10-01-2023

Cómo citar

Mercau, M. E., Calanni, J. S., Aranda, M., Rosenstein, R. E., Repetto, E. M., & Cymeryng, C. B. (2023). Efectos del tratamiento antioxidante en la activación del eje hipotálamo-hipófiso-adrenal inducida por el consumo de dietas ricas en sacarosa. Revista De La Sociedad Argentina De Diabetes, 54(2), 29–51. https://doi.org/10.47196/diab.v54i2.244

Número

Sección

Trabajo Original