MESA 3: PRESENTE Y FUTURO DE LAS TERAPIAS BIOLÓGICAS PARA EL TRATAMIENTO DE LA DIABETES MELLITUS TIPO 1

Autores/as

  • Luis Grosembacher Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Federico Pereyra Bonnet Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Carolina Muratore Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • María Laura Pomares Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Pablo Avila Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • José Retamosa Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Gabriela Cuzziol Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Alejandra Maldini Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Rubén De Marco Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Susana Apoloni Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Virginia Rama Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Martín Maraschio Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Pablo Retamosa Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Martín Berta Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Natalia Mabel Blanco Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina
  • Patricia Susana Romero Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

DOI:

https://doi.org/10.47196/diab.v49i3.635

Palabras clave:

terapias biológicas, tratamiento, diabetes mellitus tipo 1

Resumen

Avances terapéuticos biológicos. ¿De qué hablamos?

Biografía del autor/a

Luis Grosembacher, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Endocrinólogo

Carolina Muratore, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médica especialista en Medicina Interna, especializada en Diabetes

María Laura Pomares, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Especialista en Nutrición

Pablo Avila, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médico especialista en Medicina Interna, especializado en Diabetes

José Retamosa, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médico especialista en Clínica Médica, especializado en Diabetes

Gabriela Cuzziol, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médica General y Familiar, especialista en Nutrición, especializada en Diabetes

Alejandra Maldini, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médica especialista en Medicina General y Nutrición, especializada en Diabetes

Rubén De Marco, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médico especialista Endocrinología, especializado en Diabetes

Susana Apoloni, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médica Especialista en Clínica Médica y Nutrición, especializada en Diabetes

Virginia Rama, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Diabetóloga

Martín Maraschio, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médico Diabetólogo

Pablo Retamosa, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médico especialista en Clínica Médica, especializado en Diabetes

Natalia Mabel Blanco, Sociedad Argentina de Diabetes, Ciudad Autónoma de Buenos Aires, Argentina

Médica especialista en Medicina Interna, especializada en Diabetes

Citas

I. Martí ML. Historia de la Diabetes. Bol. An. de Medicina 1999, 77: 109-118.

II. Robertson RP. Islet transplantation for type 1 diabetes, 2015: what have we learned from alloislet and autoislet successes? Diabetes Care 2015, 38: 1030-1035.

III. Kowalski A. Pathway to artificial pancreas systems revisited:

moving downstream. Diabetes Care 2015; 38:1036-1043.

IV. Atkinson MA. George S. Eisenbarth 1947-2012, In Memorial. Diabetología 2013, 56: 435-438.

V. Pozilli P, Di Mario U. Autoinmune diabetes not requiring insulin at diagnosis (latent autoinmune diabetes of the adult). Diabetes Care 2001, 24 Nº 8, 1460-1467.

VI. Atkinson MA, Von Herrat M, Powers AC, et al. Current concepts on the pathogenesis of type 1 diabetes: considerations for attempts to prevent and reverse the disease. Diabetes Care 2015, 38: 979-988.

VII. Skyler JS. Prevention and reversal of type 1 diabetes: past challenges and future opportunities. Diabetes Care 2015; 38: 9971007.

VIII. Ludviggson J, Faresjo M, Hjorth M, et al. GAD Treatment and insulin secretion in recent-onset type 1 diabetes. NEJM 2008, 359: 1909-1920.

IX. Raz I, Elias D, Avron A, et al. β-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 2001, 358: 1749-1753.

X. Faustman DL, Wang L, Okubo Y, et al. Proof-of-concept, randomized, controlled clinical trial of bacillus-calmette-guerin for treatment of long-term type 1 diabetes. Plos. One 2012, Vol. 7, Issue 8, e41756.

XI. Sutherland DE, Gruessner RW, Dunn DL, Matas AJ, Humar A, Kandaswamy R, et al. Lessons learned from more than 1,000 pancreas transplants at a single institution. Ann. Surg. 2001;233(4):463-501. Review.

XII. Mittal S, Gough SC. Pancreas transplantation: a treatment option for people with diabetes. Diabet Med. 2014; 31(5):512-21. Review.

XIII. Kelly WD, Lillehei RC, Merkel FK, Idezuki Y, Goetz FC. Allotransplantation of the pancreas and duodenum along with the kidney in diabetic nephropathy. Surgery. 1967; 61(6):827-37

XIV. Sutherland DE, Matas AJ, Najarian JS. Pancreatic islet cell transplantation. Surg. Clin. North Am. 1978; 58(2):365-82.

XV. Gruessner AC, Sutherland DE. Pancreas transplant outcomes for United States (US) and non-US cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of June 2004. Clin. Transplant. 2005; 19(4):433-55. Review.

XVI. Gruessner AC, Gruessner RWG. Pancreas transplant outcomes for United States and non United States cases as reported to the United Network for Organ Sharing and the International Pancreas Transplant Registry as of December 2011. Clin. Transpl. 2340 (2012).

XVII. Newsletter Transplant. International Figures on Donation and Transplantation 2013. Vol. 19. N° 1. Septiembre 2014.

XVIII. Mauer M, Fioretto P. Pancreas transplantation and reversal of diabetic nephropathy lesions. Med. Clin. North Am. 2013; 97(1):109-14.

XIX. Gruessner RW, Gruessner AC. Pancreas transplant alone. Diabetes Care 2013, Vol. 36(8), 2440-7.

XX. Gruessner A C. Pancreas after kidney transplants in posturemic patients with type 1 diabetes mellitus. J. Am. Soc. Nephrol 2001, 12, 2490-2499.

XXI. Gruessner AC, Gruessner RW. The current state of pancreas transplantation. Nat. Rev. Endocrinol. 2013, Vol. 9, 555-562.

XXII. Gruessner RWG, Sutherland DER, Kandaswamy R, Gruessner AC. Over 500 solitary pancreas transplants in nonuremic patients with brittle diabetes mellitus. Transplantation 85, 42-47 (2008).

XXIII. Robertson P, Davis C, Larsen J, Stratta R, Sutherland DE. American Diabetes Association. Pancreas transplantation in type 1 diabetes. Diabetes Care. 2004; 27 Suppl 1:S105

XXIV. Kandaswamy R, Stock PG, Skeans MA, et al. Special Issue: Organ Procurement and Transplantation Network and Scientific Registry of Transplant Recipients 2011 Data Report. Am. J. Transplant 2013, Vol. 13, pag 47-72.

XXV. Montiel MC, Pardo F, et al. Trasplante pancreático. An. Sist. Sanit. Navar. 2006; 29 (Supl 2): 113-124.

XXVI. Smail N, Paraskevas S, Tan X, et al. Renal function in recipients of pancreas transplant alone. Curr. Opin. Organ. Transplant 2012, Vol. 17, pag 73-79.

XXVII. Meirelles RF Júnior, Salvalaggio P, Pacheco-Silva A. Pancreas transplantation. Einstein. 2015; 13(2):305-9. Review.

XXVIII. Proneth A, Schnitzbauer A, Zeman F, et al. Extended pancreas donor program. The EXPAND study rationale and study protocol. Transplant Res. 2013, Vol. 2: 12.

XXIX. Jong Han D, Shuterland D. Pancreas transplantation. Gut. Liver. 2010, Vol. 4, pag. 450-465.

XXX. Bazerbachi F, Selzner M, Marquez MA, et al. Portal venous vs systemic venous drainage of pancreas grafts: impact on longterm results. Am. J. Transplant 2012, Vol. 12, 226-232.

XXXI. Stadler M, Anderwald C, Pacini G, Zbyn S, Promintzer-Schifferl M, Mandl M, et al. Chronic peripherals hyperinsulinemia in type 1 diabetic patients after successful combined pancreas-kidney transplantation does not affect ectopic lipid acumulation in skeletal muscle and liver. Diabetes 2010; 59:2015-2018.

XXXII. Sollinger H, Odorico J, Becker Y, et al. One thousand simultaneous pancreas-kidney transplants at a single center with 22year follow-up. Ann. Surg. 2009, Vol. 250: 618-630.

XXXIII. Van der Werf WJ, Odorico JS, DAlessandro AM, et al. Enteric conversion of bladder-drained pancreas allografts: experience in 95 patients. Transplant Proc. 1998, Vol. 30, 441-442.

XXXIV. Gruessner RW, Gruessner AC. The current state of pancreas transplantation. Nat. Rev. Endocrinol. 2013; 9: 555-562.

XXXV. Gruessner AC. Update on pancreas transplantation: comprehensive trend analysis of 25,000 cases followed up over the course of twenty-four years at the International Pancreas Transplant Registry (IPTR). Rev. Diabet. Stud. 2011; 8(1):6-16. Review.

XXXVI. Shapiro AM. Islet transplantation in type 1 diabetes: ongoing challenges, refined procedures, and long-term outcome. Rev. Diabet. Stud. 2012. 9(4):385-406.

XXXVII. Poradzka A, Wronski J, Jasik M, et al. Insulin replacement theraphy in patients with type 1 diabetes by isolated pancreatic islet transplantation. Acta Poloniae Pharmaceutica-Drug Research. 2013. 70(6):943-950.

XXXVIII. Robertson RP. Islet transplantation a decade later and strategies for filling a half-full glass. Diabetes. 2010. 59:1285-1291.

XXXIX. Shapiro AMJ, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoidfree inmunosuppressive regimen. NEJM. 2000. 343:230-238.

XL. Shapiro AM, Ricordi C, Hering BJ, et al. International trial of the Edmonton protocol for islet transplantation. N. Engl. J. Med. 2006; 355(13):1318-1330.

XLI. Jamiolkowski RM, Guo LY, Li YR, et al. Islet transplantation in type 1 diabetes mellitus. 2012. Yale Journal of Biology and Medicine. 85:37-43.

XLII. Shapiro AMJ, McCall M. Update of islet transplantation. Cold Spring Harb Perspect Med., 2012. 1-17

XLIII. Robertson RP. Islet transplantation for type 1 diabetes, 2015: what have we learned from alloislet and autoislet successes? Diabetes Care 2015; 38:1030-1035.

XLIV. Ryan EA, Shandro T, Green K, et al. Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation. 2004. Diabetes. 53:955-962.

XLV. Clarke WL, Cox DJ, Gonder-Frederick LA, et al. Reduced awareness of hypoglycemia in adults with IDDM. A prospective study of hypoglycemic frequency and associated symptoms. Diabetes Care. 1995 Apr. ;18(4):517-22.

XLVI. Geddes J, Eright R, Zammit N, et al. An evaluation of methods of assessing impaired awareness of hypoglycaemia in type 1 diabetes. Diabetes Care. 2007; 30:1868-70.

XLVII. Ruiz de Adana MS, Domínguez-López M, Tapia MJ, et al. ¿Cómo cuantificar la variabilidad glucémica? Av. Diabetol. 2008; 24(1): 77-81.

XLVIII. Ricordi C, Tzakis AG, Carroll PB, et al. Human islet isolation and allotransplantation in 22 consecutive cases. Lancet 1990; 336:402-405.

XLIX. Najarian JS, Sutherland DE, Matas AJ, Goetz FC. Human islet autotransplantation following pancreatectomy. Transplant Proc. 1979; 11:336-340.

L. Teuscher AU, Kendell DM, Smets FC, et al. Successful islet autotransplantation in humans. Diabetes 1998; 47:324-330.

LI. Robertson RP. Consequences on beta-cell function and reserve after long-term pancreas transplantation. Diabetes 2004; 53:633-644.

LII. Wilson GA, Bumgardner GL, Henry ML, et al. Decreased graft survival rate in obese pancreas/kidney recipients. Transplant Proc. 1995; 27(6):3106-7.

LIII. Scalea JR, Cooper M. Surgical strategies for type II diabetes. Transplant Rev. 2012; 26(3):177-82.

LIV. Korsgren O, Nilsson B, Berne C, et al. Current status of clinical islet transplantation. Transplantation. 2005; 79(10):1289-1293.

LV. Scharp DW, Marchetti P. Encapsulated islets for diabetes therapy: history, current progress, and critical issues requiring solution. Adv. Drug. Deliv. Rev. 2014 Apr; 67-68:35-73.

LVI. Ryan EA, Lakey JR, Rajotte RV, et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes. 2001; 50(4):710-719.

LVII. Grulich AE, van Leeuwen MT, Falster MO, et al. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007; 370 (9581):59-67-23.

LVIII. Naziruddin B, Wease S, Stablein D, et al. HLA class I sensitization in islet transplant recipients: report from the Collaborative Islet Transplant Registry. Cell Transplant 2012; 21(5):901-8.

LIX. Gruessner AC, Sutherland DE. Pancreas transplant outcomes for United States (US) cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR). Clin. Transplant 2008:45-56.

LX. Burman KD, Cunningham EJ, Klachko DM, et al. Sucessful treatment of insulin resistance with dealaninated pork insulin (DPI). Mo. Med. 1973; 70(6):363-366.

LXI. Graham ML, Schuurman HJ. The usefulness and limitations of the diabetic macaque model in evaluating long-term porcine islet xenograft survival. Xenotransplantation. 2013; 20(1):5-17.

LXII. Brady JL, Sutherland RM, Hancock M, et al. Anti-CD2 producing pig xenografts effect localized depletion of human T cells in a huSCID model. Xenotransplantation. 2013; 20(2):100-109.

LXIII. Cabrera O, Berman DM, Kenyon NS, et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. USA 2006; 103:2334-2339.

LXIV. Dolgin E. Encapsulate this. Nat Med. 2014; 20(1):9-11.

LXV. Cogger K, Nostro MC. Recent advances in cell replacement therapies for the treatment of type 1 diabetes. Endocrinology 2015, Jan; 156(1):8-15.

LXVI. Watson CJ. The current challenges for pancreas transplantation for diabetes mellitus. Pharmacological Research 98 (2015) 45-51.

LXVII. Fiorina P, Folli F, Bertuzzi F, et al. Long-term beneficial effect of islet transplantation on diabetic macro-/microangiopathy in type 1 diabetic kidney-transplanted patients. Diabetes Care 26 (2003):1129-1136.

LXVIII. Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid- free inmunesuppressive régimen. N. Engl. J. Med. 2000; 343:230-238.

LXIX. Acha Torrez R. Pancreatic transplantation and Lanngerhans islets approaches in the treatment of diabetes. Rev. Cient. Cienc. Med. 2011; 14(1): 31-35.

LXX. Montanya EM, Nacher MG, Tellez NB. Trasplante de islotes de páncreas y terapia celular en diabetes. En: Montanya EM. El islote pancreático en el desarrollo y tratamiento de la diabetes. Ed. Madrid: Sociedad Española de Diabetes; 2007. 109-122.

LXXI. Shapiro AM, Ricordi C, Hering BJ, et al. International Trial of the Edmonton Protocol for Islet Transplantation. N. Engl. J. Med. 2006; 355:1318-1330.

LXXII. Pepper AR, Gala-Lopez B, Ziff O, et al. Current status of clinical islet transplantation. World J. Transplant. 2013. Dec 24.3(4):48-53.

LXXIII. Jahansouz C, Kumer SC, et al. Evolution of B-cell replacement therapy in diabetes mellitus: islet cell transplantation. J. Transplant. 2011; 2011: 247.959 (PMC) PubMed.

LXXIV. Casanova D. Pancreatic islets transplantation in the treatment of diabetes mellitus: present and future. Cir. Esp. 2009, 85(2):76-83.

LXXV. Correa-Gianella ML, Amaral AS. Pancreatic islet transplantation. Diabetology & Metabolic Syndrome 2009, 1(9).

LXXVI. Balibrea del Castillo JM, Ameigeiras EV, et al. Current status of islet transplantation. Cir. Esp. 2007, 81 (4): 177-191.

LXXVII. Ryan EA, Shandro T, Green K, et al. Assessment of the severity of hypoglycemia and glycemic lability in type 1 diabetic subjects undergoing islet transplantation. Diabetes. 2004. 53(4):955-62.

LXXVIII. Ruiz MS, Domínguez-López M, Tapia MJ, et al. Cómo cuantificar la variabilidad glucémica. Av. Diabetol. 2008; 24(1): 77-81.

LXXIX. Ludwig B, Reichel A, Kruppa A, et al. Islet transplantation at the dresden diabetes center: five years' experience. Horm. Metab. Res. 2015; 47: 4-8.

LXXX. Papadimitriou JC. Evaluación histológica del trasplante de páncreas. 21º Congreso de la SEAP, Madrid, 2003.

LXXXI. Staeva TP, Chatenoud L, Insel R, et al. Recent lessons learned from prevention and recent-onset type 1 diabetes inmunotherapy trials. Diabetes 2013; 62:9-17.

LXXXII. Barajas M. Estrategias de terapia celular para el tratamiento de la diabetes tipo 1: dónde estamos y qué podemos esperar. Av. Diabetol. 2011; 27(4):115-127.

LXXXIII. Feutren G, Papoz L, Assan R, et al. Cyclosporin increased the rate and length of remission in insulin-dependent diabetics of recent onset: result of a multicentre double-blind trial. Lancet 1986; 2:119-23.

LXXXIV. Bougneres PF, Carel JC, Castaño L, et al. Factors associated whit early remission of type 1 diabetes in children whit cyclosporine. N. Engl. J. Med.1988; 318:663-70.

LXXXV. Licea-Puig MA, Gonzalez-Calero TM. Estrategias para la prevención de la diabetes mellitus tipo 1. Revista Cubana de Salud Pública. 2013;39 (4):733- 751.

LXXXVI. Gitelman SE, Gottlieb PA, Rigby MR, et al. Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes: 12-month results of a randomised, placebo controlled, phase 2 trial. Lancet 2013; 1 (4): 306-316.

LXXXVII. Skyler JS. Inmune intervention for type 1 diabetes, 2012-2013. Diabetes Technology & Therapeutics. 2014; 16: S85-S91.

LXXXVIII. Hagopian W, Ferry RJ, Sherry N, et al. Teplizumab preserves Cpeptide in recent-onset type 1 diabetes: 2-year results from the randomized, placebo-controlled. Protégé Trial. Diabetes 2013; 62(11): 3901-3908.

LXXXIX. Herold KC, Gitelman SE, Ehlers MR, et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 2013; 62(11):3766-74.

XC. Aronson R, Gottlieb PA, Christiansen JS, Donner TW, Bosi E, Bode BW, Pozzilli P; DEFEND Investigator Group. Low-dose otelixizumab anti-CD3 monoclonal antibody DEFEND-1 study: results of the randomized phase III study in recent-onset human type 1 diabetes. Diabetes Care. 2014 Oct; 37(10):2746-54.

XCI. Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 2009; 361:2143-52.

XCII. Ludvigsson J, Krisky D, Casas R, et al. GAD65 Antigen therapy in recently diagnosed type 1 diabetes mellitus. N. Engl. J. Med. 2012; 366:433-42.

XCIII. Raz I, Ziegler AG, Linn T, et al. Treatment of recent-onset type 1 diabetic patients with DiaPep277: results of a double-blind, placebo-controlled, randomized phase 3 trial. Diabetes Care 2014; 37:1392-1400.

XCIV. Kadam S. Stem cell therapy for diabetes. Are we close enough? JKIMSU 2014, 3 (1):6-17.

XCV. Giannoukakis N, Trucco M. Cellular therapies based on stem cells and their insulin-producing surrogates: a 2015 reality check. Pediatric Diabetes 2015:16:151-163.

XCVI. Johannesson B, Sui L, O Freytes D, Creusot R, Egli D. Review: toward β cell replacement for diabetes. The EMBO Journal 2015:, Vol. 34, 841-855.

XCVII. DCCT Research Group: the effect of intensive treatment of diabetes on the development and progression of long term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993, 329: 977-986.

XCVIII. Beta cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care 2003, 26:832-836.

XCIX. Nathan DM, Bayless M, Clear TP, Genuth S, Gubitosi-Klug R, Lachin JM, Lorenza G, Ziman B. Group D.E.R. DCCT/EDIC at 30 years: advances and contributions. Diabetes 2013,62:3976-3986.

C. Meng L, Zhon Chao H. Mesenchymal stem cells: biology and clinical potential in type 1 diabetes therapy. J. Cell. Mol. Med. 2008,12 N°4:1155-1168.

CI. Gerace D, Martiniello-Wilks R, O´Brien BA, Simpson AM. The use of beta-cell transcription factors in engineering artificial beta cells from non-pancreatic tissue. Gene Therapy 2015,22:1-8.

CII. Gao X, Song L, Slen K. Transplantation of bone marrow derivedcells promotes pancreatic islet repair in mice. Biochem Biophys Res. Commun 2008,371 (1): 132-137.

CIII. Karnielli O, Izhar-Prato Y, Bulri KS, Efrat S. Generation on insulinproducing cells from human bone marrow mesenchymal stem cells by genetic manipulation. Stem Cells 2007, 25 (22): 28372844.

CIV. Weiss ML, Mendicetty S, Bledsoe AR. Human umbilical cord matrix stem cells: preliminary characterization in a rodent model of Parkinson disease. Stem Cells 2006, 24: 781-792.

CV. Maher L, Cken S, Snitow M, et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl. Acad. Sci. USA 2009, 106:15768-15773.

CVI. Stadfel M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells without viral integration. Science 2008, 322:945-949.

CVII. Lanza RP, Cibelli JB, West MD. Prospects for the use of nuclear transfer in human transplantation. Nat. Biotechnol. 1999,17:1171-1174.

CVIII. Fiorina P, Voltarelli J, Zavazava N. Inmunological aplications of stem cells in type 1 diabetes. Endocrine Reviews 2011, 32(6):725-754.

CIX. Ginis I, Luo Y, Miura T, Thies S, Brandenberger R, Gerecht-Nir S, Amit M, Hoke A, Carpenter MK, Itskovitz-Eldor J, Rao MS. Differences between human and mouse embryonic stem cells. Dev. Biol. 2004, 269:360-380.

CX. Bonde S, Zavazava N. Inmunogenicity and engraftment of mouse embryonic stem cells in allogenic recipients. Stem Cells 2006, 24:2192-2201.

CXI. Bonde S, Chan KM, Zavazava N. ES-Cell derived hematopoietic cells induce transplantation tolerance. PLoS. One 2008, 3:e3212.

CXII. Drukker M, Katchman H, Katz G, Even-Tov Friedman S, Shezen E, Hornstein E, Mandelboim O, Reisner Y, Benvenisty N. Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 2006, 24:221-229.

CXIII. Fändrich F, Lin X, Chai GX, Schulze M, Ganten D, Bader M, Holle J, Huang DS, Parwaresch R, Zavazava N, Binas B. Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat. Med. 2002, 8:171-178.

CXIV. Lysy P, Weir G, Bonner-Weir S. Concise review: pancreas regeneration: recent advances and perspectives. Stem Cells Translational Medicine 2012, 1:150-159.

CXV. Wang M, Yang Y, Yang D, Luo F, Liang W, Guo S, Xu J. The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 2009, 126:220-232

CXVI. Zhao Y, Lin B, Darflinger R, Zhang Y, Holterman MJ, Skidgel RA. Human cord blood stem cell-modulated regulatory T lymphocytes reverse the autoimmune-caused type 1 diabetes in nonobese diabetic (NOD) mice. PLoS ONE 2009 , 4:e4226.

CXVII. Oh W, Kim DS, Yang YS, Lee JK. Inmunological properties of umbilical cord blood-derived mesenchymal stromal cells. Cellular Inmunology 2008, 251 (2):116-123.

CXVIII. Kern S, Eichler H, Stoeve J, Klu¨ ter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006, 24:1294-1301.

CXIX. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells. Diabetes 2008, 57:1759-1767.

CXX. Augello A, Tasso R, Negrini SM, Amateis A, Indiveri F, Cancedda R, Pennesi G. Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur. J. Immunol. 2005, 35:1482-1490.

CXXI. Meisel R, Zibert A, Laryea M, Go¨ bel U, Da¨ubener W, Dilloo D. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004, 103:4619-4621.

CXXII. Benvenuto F, Ferrari S, Gerdoni E, Gualandi F, Frassoni F, Pistoia V, Mancardi G, Uccelli A. Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells 2007, 25:1753-1760.

CXXIII. Nauta AJ, Kruisselbrink AB, Lurvink E, Willemze R, Fibbe WE. Mesenchymal stem cells inhibit generation and function of both CD34 -derived and monocyte-derived dendritic cells. J. Immunol. 2006, 177:2080-2087.

CXXIV. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008, 111:1327-1333.

CXXV. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A. Human mesenchymal stem cells modulate B-cell functions. Blood 2006, 107:367-372.

CXXVI. Fiorina P, Jurewicz M, Augello A, Vergani A, Dada S, La Rosa S, Selig M, Godwin J, Law K, Placidi C, Smith RN, Capella C, Rodig S, Adra CN, Atkinson M, Sayegh MH, Abdi R. Immunomodulatory function of bone marrow- derived mesenchymal stem cells in experimental autoimmune type 1 diabetes. J. Immunol. 2009, 183:993-1004.

CXXVII. Zanone MM, Favaro E, Miceli I, Grassi G, Camussi E, Caorsi C, Amoroso A, Giovarelli M, Perin PC, Camussi G. Human mesenchymal stem cells modulate cellular immune response to islet antigen glutamic acid decarboxylase in type 1 diabetes. J. Clin. Endocrinol. Metab. 2010, 95:3788-3797.

CXXVIII. Li Y, Zhang R, Qiao H, Zhang H, Wang Y, Yuan H, Liu Q, Liu D, Chen L, Pei X. Generation of insulin-producing cells from PDX-1 gene-modified human mesenchymal stem cells. Journal of Cellular Physiology 2007, 211(1):36-44.

CXXIX. Le Blanc K, Ringde´n O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant 2005,11:321-334.

CXXX. Gafni Y, Turgeman G, Liebergal M, Pelled G, Gazit Z, Gazit D. Stem cells as vehicles for orthopedic gene therapy. Gene Ther. 2004, 11:417-426.

CXXXI. Sordi V, Malosio ML, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone BE, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005,106:419-427.

CXXXII. Huang S, Law P, Young D, Ho AD. Candidate hematopoietic stem cells from fetal tissues, umbilical cord blood vs adult bone marrow and mobilized peripheral blood. Exp. Hematol. 1998, 26:1162-1171.

CXXXIII. Herzog EL, Chai L, Krause DS. Plasticity of marrowderived stem cells. Blood 2003, 102:3483-3493.

CXXXIV. Sigvardsson M. New light on the biology and developmental potential of haematopoietic stem cells and progenitor cells. J. Intern. Med. 2009, 266:311-324.

CXXXV. Kared H, Leforban B, Montandon R, Renand A, Layseca Espinosa E, Chatenoud L, Rosenstein Y, Schneider E, Dy M, Zavala F. Role of GM-CSF in tolerance induction by mobilized hematopoietic progenitors. Blood 2008, 112:2575-2578.

CXXXVI. Rachamim N, Gan J, Segall H, Krauthgamer R, Marcus H, Berrebi A, Martelli M, Reisner Y. Tolerance induction by “megadose” hematopoietic transplants: donortype human CD34 stem cells induce potent specific reduction of host anti-donor cytotoxic T lymphocyte precursors in mixed lymphocyte culture. Transplantation 1998, 65:1386-1393.

CXXXVII. Lanus A, Holz GG, Theise ND, Hussain MA. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest. 2003 111:843-850.

CXXXVIII. Kang EM, Zickler PP, Burns S, Langemeijer SM, Brenner S, Phang OA, Patterson N, Harlan D, Tisdale JF. Hematopoietic stem cell transplantation prevents diabetes inNODmice but does not contribute to significant islet cell regeneration once disease is established. Exp. Hematol. 2005, 33:699-705.

CXXXIX. Yamanaka S. A fresh look at iPS cells. Cell. 2009 Apr 3;137(1):13-7.

CXL. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987-1000.

CXLI. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010 Feb 25; 463(7284):1035-4.

CXLII. Yi F, Liu GH, Izpisua Belmonte JC. Rejuvenating liver and pancreas through cell transdifferentiation. Cell Research (2012) 22:616-619.

CXLIII. Ber I, Shternhall K, Perl S, Ohanuna Z, Goldberg I, Barshack I, et al. Functional, persistent, and extended liver to pancreas transdifferentiation. J. Biol. Chem. 2003;278:31950-7.

CXLIV. Zhou Q, Melton DA. Extreme makeover: converting one cell into another. Cell Stem Cell 2008, 3(4):382-8.

CXLV. Thorel F, Nepote V, Avril I, et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature. 2010; 464:1149-1154.

CXLVI. Pennarossa G, Maffei S, Campagnol M, Tarantini L, Gandolfi F, et al. Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc. Natl. Acad. Sci. USA. 2013 May 28; 110(22):8948-53.

CXLVII. Pereyra-Bonnet F, Gimeno ML, Argumedo NR, Ielpi M, Cardozo JA, Giménez CA, Hyon SH, Balzaretti M, Loresi M, Fainstein-Day P, Litwak LE, Argibay PF. Skin fibroblasts from patients with type 1 diabetes (T1D) can be chemically transdifferentiated into insulin-expressing clusters: a transgene-free approach. PLoS One. 2014 Jun 25;9(6):e10036.

CXLVIII. Jopling C, Boue S, Izpisua Belmont JC. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol. Cell Biol. 2011; 12:79-89.

CXLIX. Dave S. Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells: a new approach to treat type 1 diabetes. Adv. Biomed. Res. 2014 Dec 31; 3:266.

CL. Nathan D, Russell S. The future of care for type 1 diabetes, CMAJ 2013. 185 (4): 285-286.

CLI. MacDonald P, Rorsman P. The ins and outs of secretion from pancreatic β-cells: control of single-vesicle exo- and endocitosis. Physiology. 2007, 22 (2) 113-121.

CLII. Misler S. The isolated pancreatic islet as a micro-organ and its transplantation to cure diabetes: celebrating the legacy of Paul Lacy. Islets. 2010. 2(4):210-24.

CLIII. Castle J, Engle JM, El Youssef J, et al. Novel use of glucagon in a closed-loop system for prevention of hypoglycemia in type 1 diabetes. Diabetes Care. 2010. 33:1282-1287.

CLIV. Hoogwerf B, Doshi KB, Diab D. Pramlintide, the synthetic analogue of amylin: physiology, pathophysiology, and effects on glycemic control, body weight, and selected biomarkers of vascular risk. Vasc. Health Risk Manag. 2008.; 4(2): 355-362.

CLV. Phillip M, Battelino T, Rodriguez H, et al. Use of insulin pump therapy in the pediatric age-group consensus statement from the European Society for Paediatric Endocrinology, the Lawson Wilkins Pediatric Endocrine Society, and the International Society for Pediatric and Adolescent Diabetes, endorsed by the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2007. 30(6):1653-62

CLVI. Russell SJ, El-Khatib FH, Sinha M, et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N. Engl. J. Med. 2014. 371:313-25.

CLVII. Kowalski A. Pathway to artificial pancreas systems revisited: moving downstream. Diabetes Care. 2015. 38:1036-1043.

CLVIII. Ly T, Brnabic AJ, Eggleston A, et al. A cost-effectiveness analysis of sensor-augmented insulin pump therapy and automated insulin suspension vs standard pump therapy for hypoglycemic unaware patients with type 1 diabetes. Value Health. 2014. 17(5):561-9.

CLIX. Shah, V. Shoskes A, Tawfik B, et al. Closed-loop system in the management of diabetes: past, present, and future. Diabetes Technol. Ther. 2014. 16(8):477-90.

CLX. Doyle F, Huyett LM, Lee JB, et al. Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care. 2014. 37:1191-1197.

CLXI. El-Khatib F, Russell SJ, Nathan DM, et al. A bihormonal closedloop artificial pancreas for type 1 diabetes. Sci. Transl. Med. 2010. 2, 27ra27.

CLXII. Rusell S, El-Khatib FH, Nathan DM, et al. Blood glucose control in type 1 diabetes with a bihormonal bionic endocrine pancreas. Diabetes Care. 2012. 35:2148-2155.

CLXIII. Kovatchev, B, Renard E, Cobelli C, et al. Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas. Diabetes Care. 2014. 37:1789-1796.

CLXIV. Weinzimer SA, Steil GM, Swan KL, et al. Fully automated closedloop insulin delivery vs semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care. 2008. 31(5):934-9.

CLXV. Renukuntla VS, Ramchandani N, Trast J, et al. Role of glucagonlike peptide-1 analogue vs amylin as an adjuvant therapy in type 1 diabetes in a closed loop setting with ePID algorithm. J. Diabetes Sci. Technol. 2014. 8(5):1011-7.

CLXVI. El-Khatib, FH, Russell SJ, Magyar KL, et al. Autonomous and continuous adaptation of a bihormonal bionic pancreas in adults and adolescents with type 1 diabetes. J. Clin. Endocrinol. Metab. 2014. 99(5):1701-11.

CLXVII. Srinivasan A, Lee JB, Dassau E, et al. Novel insulin delivery profiles for mixed meals for sensor-augmented pump and closedloop artificial pancreas therapy for type 1 diabetes mellitus. J. Diabetes Sci. Technol. 2014. 8(5):957-68.

CLXVIII. Steil GM, Rebrin K, Darwin C, et al. Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes. 2006. 55(12):3344-50.

CLXIX. Hovorka R, Allen JM, Elleri D, et al. Manual closed-loop insulin delivery in children and adolescents with type 1 diabetes: a phase 2 randomised crossover trial. Lancet. 2010 27; 375(9716):743-51.

CLXX. The Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Effect of intensive therapy on the microvascular complications of type 1 diabetes mellitus. JAMA 2002. 287, 2563-2569.

CLXXI. El-Khatib FH, Jiang J, Damiano ER. A feasibility study of bihormonal closed loop blood glucose control using dual subcutaneous infusión of insulin and glucagon in ambulatory swine. J. Diabetes Sci. Technol. 2009. 1;3(4):789-803.

CLXXII. Beck RW, Tamborlane WV, Bergenstal RM, et al. The T1D exchange clinic registry. J. Clin. Endocrinol. Metab. 2012. 97(12):4383-9.

CLXXIII. Steil GM, Rebrin K, Darwin C, et al. Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 2006. 55(12):3344-50.

CLXXIV. Wood JR, Miller KM, Maahs DM, et al. Most youth with type 1 diabetes in the T1D Exchange Clinic Registry do not meet American Diabetes Association or International Society for Pediatric and Adolescent Diabetes clinical guidelines. Diabetes Care. 2013. 36(7):2035-7.

Descargas

Publicado

21-12-2023

Cómo citar

Grosembacher, L., Pereyra Bonnet, F., Muratore, C., Pomares, M. L., Avila, P., Retamosa, J., Cuzziol, G., Maldini, A., De Marco, R., Apoloni, S., Rama, V., Maraschio, M., Retamosa, P., Berta, M., Blanco, N. M., & Romero, P. S. (2023). MESA 3: PRESENTE Y FUTURO DE LAS TERAPIAS BIOLÓGICAS PARA EL TRATAMIENTO DE LA DIABETES MELLITUS TIPO 1. Revista De La Sociedad Argentina De Diabetes, 49(3), 45–70. https://doi.org/10.47196/diab.v49i3.635

Artículos más leídos del mismo autor/a

1 2 3 4 > >>