Cascada de señalización de la insulina y la actividad física para el transporte de GLUT-4 y la captación de glucosa en el músculo esquelético
DOI:
https://doi.org/10.47196/diab.v57i3.725Palabras clave:
músculo esquelético, insulina, ejercicioResumen
El músculo esquelético (ME), debido a su significativo tamaño y función, representa el tejido que más energía demanda durante la actividad física. En respuesta a esta demanda, ha desarrollado un sistema altamente especializado para almacenar energía y satisfacer sus necesidades metabólicas. Para alcanzar esta eficacia en el almacenamiento y abastecimiento de nutrientes, en particular de glucosa, el ME depende de una incorporación nutricional eficaz. La relación entre la insulina y el ejercicio ilustra un ejemplo de equilibrio complejo y de adaptación, en el que dos fuerzas reguladoras metabólicas se contraponen en contextos cambiantes.
El aumento de la insulina en la sangre comunica al ME la presencia de niveles elevados de glucosa plasmática. Aunque la insulina se secreta tras la ingesta y es la principal hormona que aumenta el almacenamiento de glucosa y ácidos grasos en forma de glucógeno y triglicéridos, respectivamente, el ejercicio es una situación fisiológica que exige la movilización y oxidación de las reservas energéticas. Por lo tanto, durante la actividad física, los efectos del almacenamiento inducidos por la insulina deben mitigarse mediante la inhibición de la liberación de insulina durante el ejercicio, y la activación de los mecanismos sistémicos y locales de movilización de energía.
La interacción de la insulina con su receptor da lugar a una compleja cascada de señales que promueve la captación de glucosa y la síntesis de glucógeno. Uno de los efectos más estudiados de la señalización insulínica en el ME es el incremento en la captación de la glucosa muscular. Tanto la insulina como la actividad contráctil aumentan la entrada de glucosa en el ME, proceso que involucra la translocación y fusión de vesículas que contienen el transportador de glucosa GLUT-4 en la membrana (GSV: vesículas de almacenamiento de GLUT-4). Así, los estímulos mencionados provocan el traslado de las GSV hacia la superficie celular, donde se fusionan, lo que aumenta la presencia de GLUT-4 y favorece la captación de glucosa del entorno intersticial. Este proceso de fusión se conoce como “exocitosis de GLUT-4”.
Tras la actividad física, es necesario reponer las reservas de energía consumidas, en especial, el glucógeno en el músculo. El proceso se ve favorecido por un aumento de la sensibilidad a la insulina en los músculos previamente ejercitados, lo que facilita la utilización de la glucosa en la resíntesis del glucógeno. Este trabajo de revisión abarca los nuevos actores de la cascada de señalización de la insulina, el transporte de GLUT-4 y las interacciones insulina-ejercicio durante y después de la actividad física. Además, explora los efectos del entrenamiento físico regular sobre la acción de la insulina.
Citas
I. Sylow L, Tokarz VL, Richter EA, Klip A. The many actions of insulin in skeletal muscle, the paramount tissue determining glycemia. Cell Metab 2021;33(4):758-780.
II. Jaldin-Fincati JR, Pavarotti M, Frendo-Cumbo S, Bilan PJ, Klip A. Update on GLUT-4 vesicle traffic. A cornerstone of insulin action. Trends Endocrinol Metab 2017;28(8):597-611.
III. Richter EA, Sylow L, Hargreaves M. Interactions between insulin and exercise. Biochem J 2021;478(21):3827-3846.
IV. Lawrence MC. Understanding insulin and its receptor from their three-dimensional structures. Mol Metab 2021;52:101255.
V. De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 2002;1(10):769-783.
VI. De Meyts P. The insulin receptor and its signal transduction network. En: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000 Disponible en: http://www.ncbi.nlm.nih.gov/books/NBK378978/ [Consultado febrero 2023].
VII. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014;6(1):a009191.
VIII. Kaburagi Y, Yamauchi T, Yamamoto-Honda R, et al. The mechanism of insulin-induced signal transduction is mediated by the insulin receptor substrate family. Endocr J 1999;46(Suppl):S25-34.
IX. Shaw LM. The insulin receptor substrate (IRS) proteins. Cell Cycle 2011;10(11):1750-1756.
X. Chang L, Chiang S-H, Saltiel AR. Insulin signaling and the regulation of glucose transport. Mol Med 2004;10(7-12):65-71.
XI. Świderska E, Strycharz J, Wróblewski A, et al. Role of PI3K/Akt pathway in insulin-mediated glucose uptake. Intech Open; 2018.
XII. Shepherd PR. Mechanisms regulating phosphoinositide 3-kinase signaling in insulin-sensitive tissues. Acta Physiol Scand 2005;183(1):3-12.
XIII. Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab 2002;283(1):E1-11.
XIV. Osorio-Fuentealba C, Klip A. Dissecting signaling by individual Akt/PKB isoforms, three steps at once. Biochem J 2015;470(2):e13-16.
XV. Manning BD, Toker A. Akt/PKB signaling: navigating the Network. Cell 2017;169(3):381-405.
XVI. Nomiyama R, Emoto M, Fukuda N, et al. Protein kinase C iota facilitates insulin-induced glucose transport by phosphorylation of soluble NSF attachment protein receptor regulator (SNARE) double C2 domain protein b. J Diabetes Investig 2019;10(3):591-601.
XVII. Mann G, Riddell MC, Adegoke OAJ. Effects of acute muscle contraction on the key molecules in insulin and akt signaling in skeletal muscle in health and in insulin resistant states. Diabetology 2022;3(3):423-446.
XVIII. Carracedo A, Pandolfi PP. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 2008;27(41):5527-5541.
XIX. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 2009;10(8):513-525.
XX. Sun Y, Bilan PJ, Liu Z, Klip A. Rab8A and Rab13 are activated by insulin and regulate GLUT-4 translocation in muscle cells. Proc Natl Acad Sci U S A. 2010;107(46):19909-19914.
XXI. Sano H, Peck GR, Kettenbach AN, Gerber SA, Lienhard GE. Insulin-stimulated GLUT-4 protein translocation in adipocytes requires the Rab10 guanine nucleotide exchange factor Dennd4C. J Biol Chem 2011;286(19):16541-16545.
XXII. Klip A, Sun Y, Chiu TT, Foley KP. Signal transduction meets vesicle traffic: the software and hardware of GLUT-4 translocation. Am J Physiol Cell Physiol 2014;306(10):C879-886.
XXIII. Sylow L, Jensen TE, Kleinert M, et al. RAC1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle. Diabetes 2013;62(6):1865-75.
XXIV. Sylow L, Jensen TE, Kleinert M, et al. RAC1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle. Diabetes 2013;62(4):1139-1151.
XXV. Balamatsias D, Kong AM, Waters JE, et al. Identification of P-Rex1 as a novel RAC1-guanine nucleotide exchange factor (GEF) that promotes actin remodeling and GLUT-4 protein trafficking in adipocytes. J Biol Chem 2011;286(50):43229-43240.
XXVI. Takenaka N, Yasuda N, Nihata Y, et al. Role of the guanine nucleotide exchange factor in Akt2-mediated plasma membrane translocation of GLUT-4 in insulin-stimulated skeletal muscle. Cell Signal 2014;26(11):2460-2469.
XXVII. Chiu TT, Patel N, Shaw AE, Bamburg JR, Klip A. Arp2/3- and cofilin-coordinated actin dynamics is required for insulin-mediated GLUT-4 translocation to the surface of muscle cells. Mol Biol Cell 2010;21(20):3529-3539.
XXVIII. Rudich A, Klip A. Putting RAC1 on the path to glucose uptake. Diabetes 2013;62(6):1831-1832.
XXIX. Foster LJ, Klip A. Mechanism and regulation of GLUT-4 vesicle fusion in muscle and fat cells. Am J Physiol Cell Physiol. 2000;279(4):C877-890.
XXX. Thurmond DC, Pessin JE. Molecular machinery involved in the insulin-regulated fusion of GLUT-4-containing vesicles with the plasma membrane (review). Mol Membr Biol 2001;18(4):237-245.
XXXI. Grusovin J, Macaulay SL. Snares for GLUT-4 mechanisms directing vesicular trafficking of GLUT-4. Front Biosci 2003;8:d620-641.
XXXII. Bryant NJ, Gould GW. SNARE Proteins underpin insulin-regulated GLUT-4 traffic. Traffic 2011;12(6):657-664.
XXXIII. Jewell JL, Oh E, Ramalingam L, et al. Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. J Cell Biol 2011;193(1):185-199.
XXXIV. Latham CF, López JA, Hu S-H, et al. Molecular dissection of the Munc18c/syntaxin4 interaction: implications for regulation of membrane trafficking. Traffic 2006;7(10):1408-1419.
XXXV. Macaulay SL, Grusovin J, Stoichevska V, Ryan JM, Castelli LA, Ward CW. Cellular munc18c levels can modulate glucose transport rate and GLUT-4 translocation in 3T3L1 cells. FEBS Lett 2002;528(1-3):154-160.
XXXVI. Bakke J, Bettaieb A, Nagata N, Matsuo K, Haj FG. Regulation of the SNARE-interacting protein Munc18c tyrosine phosphorylation in adipocytes by protein-tyrosine phosphatase 1B. Cell Commun Signal 2013;11:57.
XXXVII. Yu H, Rathore SS, Shen J. Synip arrests soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent membrane fusion as a selective target membrane SNARE-binding Inhibitor. J Biol Chem 2013;288(26):18885-18893.
XXXVIII. Saito T, Okada S, Nohara A, et al. Syntaxin4 interacting protein (Synip) binds phosphatidylinositol (3,4,5) triphosphate. PLoS ONE 2012;7(8):e42782.
XXXIX. Yamada E, Okada S, Saito T, et al. Akt2 phosphorylates Synip to regulate docking and fusion of GLUT-4-containing vesicles. J Cell Biol 2005;168(6):921-928.
XL. Miyazaki M, Emoto M, Fukuda N, Hatanaka M, Taguchi A, Miyamoto S, Tanizawa Y. DOC2b is a SNARE regulator of glucose-stimulated delayed insulin secretion. Biochem Biophys Res Commun 2009;384(4):461-465.
XLI. Yu H, Rathore SS, Davis EM, Ouyang Y, Shen J. Doc2b promotes GLUT-4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane-bending-dependent manner. Mol Biol Cell 2013;24(8):1176-1184.
XLII. Ramalingam L, Oh E, Thurmond DC. Doc2b enrichment enhances glucose homeostasis in mice via potentiation of insulin secretion and peripheral insulin sensitivity. Diabetologia 2014;57(7):1476-1484.
XLIII. Cai H, Reim K, Varoqueaux F, et al. Complexin II plays a positive role in Ca2+-triggered exocytosis by facilitating vesicle priming. Proc Natl Acad Sci USA 2008;105(49):19538-19543.
XLIV. Huntwork S, Littleton JT. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat Neurosci 2007;10(10):1235-1237.
XLV. Pavarotti MA, Tokarz V, Frendo-Cumbo S, et al. Complexin-2 redistributes to the membrane of muscle cells in response to insulin and contributes to GLUT-4 translocation. Biochem J 2021;478(2):407-422.
XLVI. Bertrand L, De Loof M, Beauloye C, Horman S, Bultot L. A new degree of complexity (n)ty in the regulation of GLUT-4 trafficking. Bioch J 2021;478(7):1315-1319.
XLVII. Bouskila M, Hunter RW, Ibrahim AFM, et al. Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle. Cell Metabolism 2010;12(5):456-466.
XLVIII. Richter EA, Ruderman NB, Gavras H, Belur ER, Galbo H. Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am J Physiol 1982;242(1):E25-32.
XLIX. Kennedy JW, Hirshman MF, Gervino EV, et al. Acute exercise induces GLUT-4 translocation in the skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes 1999;48(5):1192-1197.
L. Ritchter EA, et al. Sarcolemmal glucose transport and GLUT-4 translocation during exercise are diminished by endurance training. Am J Physiol 1998;274(1):E89-95.
LI. Katz A, Broberg S, Sahlin K, Wahren J. Leg glucose uptake during maximal dynamic exercise in humans. Am J Physiol 1986;251(1 Pt 1):E65-70.
LII. Richter EA. Is GLUT-4 translocation the answer to exercise-stimulated muscle glucose uptake? Am J Physiol Endocrinol Metab 2021;320(2):E240-E243.
LIII. Richter EA, Hargreaves M. Exercise, GLUT-4, and skeletal muscle glucose uptake. Physiol Rev 2013;93(3):993-1017.
LIV. Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol 1985;366:233-249.
LV. Dawson D, Vincent MA, Barrett EJ, et al. Vascular recruitment in skeletal muscle during exercise and hyperinsulinemia assessed by contrast ultrasound. Am J Physiol Endocrinol Metab. 2002;282(3):E714-20.
LVI. Inyard AC, Clerk LH, Vincent MA, Barrett EJ. Contraction stimulates nitric oxide–independent microvascular recruitment and increases muscle insulin uptake. Diabetes 2007;56(9):2194-200.
LVII. Rowell LB, Shepherd JT, editors. Handbook of Physiology: Section 12: Exercise: regulation and integration of multiple systems. 1st ed. American Physiological Society/Oxford Univ Press; 1996.
LVIII. Martin IK, Katz A, Wahren J. Splanchnic and muscle metabolism during exercise in NIDDM patients. Am J Physiol. 1995;269(3 Pt 1):E583-90.
LIX. Hargreaves M, Meredith I, Jennings G. Muscle glycogen and glucose uptake during exercise in humans. Exp Physiol 1992;77(4):641-644.
LX. Jensen TE, Sylow L, Rose AJ, et al. Contraction-stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmic reticulum Ca2+ release. Molecular Metabolism 2014;3(7):742-753.
LXI. Wright DC, Hucker KA, Holloszy JO, Han DH. Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 2004;53(2):330-335.
LXII. Osorio-Fuentealba C, Contreras-Ferrat AE, Altamirano F, et al. Electrical stimuli release ATP to increase GLUT-4 translocation and glucose uptake via PI3Kγ-Akt-AS160 in skeletal muscle cells. Diabetes 2013;62(5):1519-1526.
LXIII. Witczak CA, Jessen N, Warro DM, et al. CaMKII regulates contraction-induced, but not insulin-induced, glucose uptake in mouse skeletal muscle. Am J Physiol Endrocrinol Metab 2010;298(6):E1150-1160.
LXIV. Chambers MA, et a. Stretch-stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP-kinase. J Physiol 2009;587(Pt 13):3363-3373.
LXV. Sandström ME, Zhang S-J, Bruton J, et al. Role of reactive oxygen species in contraction-mediated glucose transport in mouse skeletal muscle. J Physiol 2006;575(1):251-262.
LXVI. Jessen N, Goodyear LJ. Contraction signaling to glucose transport in skeletal muscle. J Appl Physiol 2005;99(1):330-337.
LXVII. Costford SR, Kavaslar N, Ahituv N, et al. Gain-of-function R225W mutation in human AMPKγ3 causing increased glycogen and decreased triglyceride in skeletal muscle. PLOS ONE 2007;2(9):e903.
LXVIII. Liu Y, Lai Y-C, Hill EV, et al. Phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) is an AMPK target participating in contraction-stimulated glucose uptake in skeletal muscle. Bioch J 2013;455(2):195-206.
LXIX. Koh HJ, et al. Sucrose nonfermenting AMPK-related kinase (SNARK) mediates contraction-stimulated glucose transport in mouse skeletal muscle. Proc Natl Acad Sci 2010;107(35):15541-15546.
LXX. Jensen TE, Angin Y, Sylow L, Richter EA. Is contraction-stimulated glucose transport feedforward regulated by Ca2+? Exp Physiol 2014;99(12):1562-1568.
LXXI. Rose AJ, Kiens B, Richter EA. Ca2+-calmodulin-dependent protein kinase expression and signaling in skeletal muscle during exercise. J Physiol 2006;574(Pt 3):889-903.
LXXII. Park DR, Park KH, Kim BJ, Yoon CS, Kim UH. Exercise ameliorates insulin resistance via Ca2+ signals distinct from those of insulin for GLUT-4 translocation in skeletal muscles. Diabetes 2015;64(4):1224-1234.
LXXIII. Lee HC. Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling. Sci China Life Sci 2011;54(8):699-711.
LXXIV. Guse AH, Wolf IMA. Ca (2+) microdomains, NAADP and type 1 ryanodine receptor in cell activation. Biochim Biophys Acta 2016;1863(6 Pt B):1379-1384.
LXXV. Jensen TE, Rose AJ, Hellsten Y, Wojtaszewski JFP, Richter EA. Caffeine-induced Ca2+ release increases AMPK-dependent glucose uptake in rodent soleus muscle. Am J Physiol Endocrinol Metab 2007;293(1): E286-292.
LXXVI. Li J, King NC, Sinoway LI. Interstitial ATP and norepinephrine concentrations in active muscle. Circulation 2005;111(21):2748-2751.
LXXVII. Yano S, Morino-Koga S, Kondo T, et al. Glucose uptake in rat skeletal muscle L6 cells is increased by low-intensity electrical current through the activation of the phosphatidylinositol-3-OH kinase (PI-3K)/Akt pathway. J Pharmacol Sci 2011;115(1):94-98.
LXXVIII. Kim MS, Lee J, Ha J, et al. ATP stimulates glucose transport through activation of P2 purinergic receptors in C(2)C(12) skeletal muscle cells. Arch Biochem Biophys 2002;401(2):205-14.
LXXIX. Sylow L, Møller LLV, Kleinert M, Richter EA, Jensen TE. Stretch-stimulated glucose transport in skeletal muscle is regulated by RAC1. J Physiol 2015;593(3):645-656.
LXXX. Sylow L, Nielsen IL, Kleinert M, et al. RAC1 governs exercise‐stimulated glucose uptake in skeletal muscle through the regulation of GLUT-4 translocation in mice. J Physiol 2016;594(17):4997-5008.
LXXXI. Zhou Y, Jiang D, Thomason DB, Jarrett HW. Laminin-induced activation of RAC1 and JNKp46 is initiated by Src family kinases and mimics the effects of skeletal muscle contraction. Biochemistry 2007;46(51):14907-14916.
LXXXII. Oak SA, Zhou YW, Jarrett HW. Skeletal muscle signaling pathway through the dystrophin glycoprotein complex and RAC1. J Biol Chem 2003;278(41):39287-39295.
LXXXIII. Kitajima N, Watanabe K, Morimoto S, et al. TRPC3-mediated Ca2+ influx contributes to RAC1-mediated production of reactive oxygen species in MLP-deficient mouse hearts. Biochem Biophys Res Commun 2011;409(1):108-113.
LXXXIV. Huveneers S, Danen EH. Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci. 2009 Apr 15;122(Pt 8):1059-1069.
LXXXV. Nozaki S, Ueda S, Takenaka N, Kataoka T, Satoh T. Role of RalA downstream of RAC1 in insulin-dependent glucose uptake in muscle cells. Cell Signal 2012;24(11):2111-2117.
LXXXVI. Järhult J, Holst J. The role of the adrenergic innervation to the pancreatic islets in the control of insulin release during exercise in man. Pflügers Arch 1979;383(1):41-45.
LXXXVII. Berger M, Hagg S, Ruderman NB. Glucose metabolism in perfused skeletal muscle. Interaction of insulin and exercise on glucose uptake. Biochem J 1975;146(1):231-238.
LXXXVIII. Ploug T, Galbo H, Richter EA. Increased muscle glucose uptake during contractions: no need for insulin. Am J Physiol. 1984;247(6 Pt 1):E726-31.
LXXXIX. Wasserman DH, Mohr T, Kelly P, Lacy DB, Bracy D. Impact of insulin deficiency on glucose fluxes and muscle glucose metabolism during exercise. Diabetes 1992;41(10):1229-1238.
XC. DeFronzo RA, Ferrannini E, Sato Y, Felig P, Wahren J. Synergistic interaction between exercise and insulin on peripheral glucose uptake. J Clin Invest 1981;68(6):1468-1474.
XCI. Mikines KJ, et al. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol 1988;254(3 Pt1):E248-259.
XCII. Wojtaszewski JF, et al. Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes 2000;49(3):325-331.
XCIII. Steenberg DE, et al. A single bout of one-legged exercise to local exhaustion decreases insulin action in nonexercised muscle leading to decreased whole-body insulin action. Diabetes 2020;69(4):578-590.
XCIV. Cacicedo JM, Gauthier M-S, Lebrasseur NK, Jasuja R, Ruderman NB, Ido Y. Acute exercise activates AMPK and eNOS in the mouse aorta. Am J Physiol Heart Circ Physiol 2011;301(4): H1255-1265.
XCV. Fisher JS, Gao J, Han DH, Holloszy JO, Nolte LA. Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 2002;282(1):E18-23.
XCVI. Pehmøller C, Brandt N, Birk JB, et al. Exercise alleviates lipid-induced insulin resistance in human skeletal muscle-signaling interaction at the level of TBC1 domain family member 4. Diabetes 2012;61(11):2743-2752.
XCVII. Kjøbsted R, Chadt A, Jørgensen NO, et al. TBC1D4 is necessary for enhancing muscle insulin sensitivity in response to AICAR and contraction. Diabetes 2019;68(9):1756-1766.
XCVIII. Whitfield J, Paglialunga S, Smith BK, et al. Ablating the protein TBC1D1 impairs contraction-induced sarcolemmal glucose transporter 4 redistribution but not insulin-mediated responses in rats. J Biol Chem 2017;292(40):16653-16664.
XCIX. Kjøbsted R, Munk-Hansen N, Birk JB, et al. Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK. Diabetes 2016;66(3):598-612.
C. Moore TM, Zhou Z, Cohn W, et al. The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle. Mol Metab 2018;21:51-67.
CI. Deshmukh AS, Murgia M, Nagaraj N, Treebak JT, Cox J, Mann M. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol Cell Proteomics 2015;14(4):841-853.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 a nombre de los autores. Derechos de reproducción: Sociedad Argentina de Diabetes
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Dirección Nacional de Derecho de Autor, Exp. N° 5.333.129. Instituto Nacional de la Propiedad Industrial, Marca «Revista de la Sociedad Argentina de Diabetes - Asociación Civil» N° de concesión 2.605.405 y N° de disposición 1.404/13.
La Revista de la SAD está licenciada bajo Licencia Creative Commons Atribución – No Comercial – Sin Obra Derivada 4.0 Internacional.
Por otra parte, la Revista SAD permite que los autores mantengan los derechos de autor sin restricciones.