Data mining in diabetes
DOI:
https://doi.org/10.47196/diab.v49i3.204Keywords:
data mining, diabetes, technologyAbstract
Data mining is a relatively new tool that allows finding out unknown associations in databases. Its use in medicine is scarce and therefore in diabetes. We describe basic notions with hypothetic examples regarding diabetes, to apply in our daily practice.
References
Savage N. Mining data for better medicine. MIT Technology Review. 2011; 38:235-7.
North MA. Data mining for the masses. A global text project book. 2012; 122-24.
Kotu V, Deshpande B. Predictive analytics and data mining: concepts and practice with Rapidminer. Morgan Kaufmann, Elsevier, 2014: 4111.
Chisholm A. Exploring data with Rapidminer. Packt Publishing. 2013: 306-7.
Hofmann M. Data mining use cases and business and analytics applications. Chapman&Hall CRC. 2013; 234-5.
Sumathi S, Sivanandam S. Introduction to Data mining and its applications. Springer. USA. 2006; 732-33.
The DCCT Research Group. Epidemiology of severe hypoglycemia in the diabetes control and complications trial. The American Journal of Medicine. Vol. 90, Issue 4, April 1991, Pages 450-459.
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Dirección Nacional de Derecho de Autor, Exp. N° 5.333.129. Instituto Nacional de la Propiedad Industrial, Marca «Revista de la Sociedad Argentina de Diabetes - Asociación Civil» N° de concesión 2.605.405 y N° de disposición 1.404/13.
La Revista de la SAD está licenciada bajo Licencia Creative Commons Atribución – No Comercial – Sin Obra Derivada 4.0 Internacional.
Por otra parte, la Revista SAD permite que los autores mantengan los derechos de autor sin restricciones.