IXX Conference of the Graduate Committee of the Argentine Diabetes Society. Topic: “Diabetes mellitus and non-classical organs”. Table 2: Gastrointestinal pathologies and diabetes mellitus

Authors

  • Alejandra Carolina Maldini National University of La Pampa, Santa Rosa, La Pampa, Argentina
  • María Laura Calvo Independence Hospital Santiago del Estero, Santiago del Estero, Argentina
  • Ana Schlinder Center for Outpatient Medical Specialties of Reference (CEMAR No. 1), Government of the Autonomous City of Buenos Aires, Autonomous City of Buenos Aires, Argentina
  • Verónica Ojeda Heredia Hospital Nacional de Clínicas, National University of Córdoba (UNC), Córdoba, Argentina
  • Rubén De Marco Hospital El Cruce, Florencio Varela, Province of Buenos Aires, Argentina
  • Gisela Mariel Esquivel Forlin Hospital Dr. J.R. Vidal, Corrientes, Argentina
  • Joaquín Pablo González University Hospital, National University of Cuyo, Mendoza, Argentina
  • Susana Beatriz Apoloni Austral University Hospital, Pilar, Province of Buenos Aires, Argentina
  • Mariana Burgos Banking Polyclinic and Italian Hospital of Buenos Aires, Autonomous City of Buenos Aires, Argentina
  • Claudio Esteban López Hospital Ángela de Llano, Corrientes, Argentina
  • Sofía Fábregues San Camilo Clinic, Autonomous City of Buenos Aires, Argentina
  • Laura Elisa Roccatagliata Riglos Clinic, Autonomous City of Buenos Aires, Argentina
  • Silvina Ramos Meridiano Building, Pilar, Province of Buenos Aires, Argentina
  • Lisandro Alberto García Hospital Español, Autonomous City of Buenos Aires, Argentina
  • Lía Marta Milikowski University of Buenos Aires, (UBA), Autonomous City of Buenos Aires, Argentina

DOI:

https://doi.org/10.47196/diab.v57i1.680

Keywords:

diabetes mellitus, microbiota, gastrointestinal, celiac disease

Abstract

The intestinal microbiome is composed of diverse microorganisms with great interindividual variability due to different factors. This imbalance seems to have a pathogenic impact on type 1 and type 2 diabetes mellitus (DM). Diet-related dysbiosis plus inflammation and hormonal changes also have a pathogenic role in gestational diabetes.

Improvement in insulinosensitivity has been demonstrated by treating dysbiosis, in turn the gut microbiota is considered a potential target for oral agents.

Gastrointestinal neuropathies are among the least known and understood complications of DM, with a complex and multifactorial pathophysiology that cause a multiplicity of symptoms that alter the patient's quality of life.

The prevalence of celiac disease (CD) is much more frequent in people with DM1 than in the general population, related to the autoimmune basis of both pathologies. The association between CD and DM2 has been described but is little studied.

Author Biographies

Alejandra Carolina Maldini, National University of La Pampa, Santa Rosa, La Pampa, Argentina

Specialist in Nutrition, Diabetes and General Medicine, National University of La Pampa, Santa Rosa, La Pampa, Argentina

María Laura Calvo, Independence Hospital Santiago del Estero, Santiago del Estero, Argentina

Clinical Physician specialized in Diabetes

Ana Schlinder, Center for Outpatient Medical Specialties of Reference (CEMAR No. 1), Government of the Autonomous City of Buenos Aires, Autonomous City of Buenos Aires, Argentina

Specialist in Nutrition, Diabetes and General Medicine; Diabetologist at Center for Outpatient Medical Specialties of Reference (CEMAR No. 1)

Verónica Ojeda Heredia, Hospital Nacional de Clínicas, National University of Córdoba (UNC), Córdoba, Argentina

Head of the National Clinical Hospital Service

Rubén De Marco, Hospital El Cruce, Florencio Varela, Province of Buenos Aires, Argentina

Diabetologist; Medical Clinic, Hospital El Cruce

Gisela Mariel Esquivel Forlin, Hospital Dr. J.R. Vidal, Corrientes, Argentina

Medical Clinic, specialist in Diabetes

Joaquín Pablo González, University Hospital, National University of Cuyo, Mendoza, Argentina

Medical Clinic and Diabetology

Susana Beatriz Apoloni, Austral University Hospital, Pilar, Province of Buenos Aires, Argentina

Magister in diabetes, specialist in Clinical Medicine and Nutrition; Coordinator of the 2022 Graduates Committee, Argentine Diabetes Society, Diabetes Service

Mariana Burgos, Banking Polyclinic and Italian Hospital of Buenos Aires, Autonomous City of Buenos Aires, Argentina

Family doctor, specialist in Clinical Nutrition, Master in Diabetes

Claudio Esteban López, Hospital Ángela de Llano, Corrientes, Argentina

Medical Clinic, specialized in Diabetes, Diabetes Service

Sofía Fábregues, San Camilo Clinic, Autonomous City of Buenos Aires, Argentina

Specialist in General and/or Family Medicine, specialized in Diabetes, Health and Community Action Centers No. 11 (CeSAC No. 11), Ramos Mejía Hospital

Laura Elisa Roccatagliata, Riglos Clinic, Autonomous City of Buenos Aires, Argentina

Internal Medicine and Diabetes Specialist, Riglos Clinic

Silvina Ramos, Meridiano Building, Pilar, Province of Buenos Aires, Argentina

Cardiologist, Integrum Center, Precision Medicine

Lisandro Alberto García, Hospital Español, Autonomous City of Buenos Aires, Argentina

Gastroenterology and Nutrition Specialist, Director of the Rodríguez Peña Nutritional Support Center; Head of the Nutrition and Diabetes Service, Hospital Español (July 1997-30/December 2013)

Lía Marta Milikowski, University of Buenos Aires, (UBA), Autonomous City of Buenos Aires, Argentina

Medical consultant Nutrition Service, Hospital C. Durand, specialist in Gastroenterology and Medical, University specialist in Nutrition; Associate Professor of Nutrition

References

I. Shkoporov AN, Hill C. Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 2019;25:195-209.

II. Khudhair Z, Alhallaf R, Eichenberger RM, et al. Gastrointestinal helminth infection improves insulin sensitivity, decreases systemic inflammation, and alters the composition of gut microbiota in distinct mouse models of type 2 diabetes. Front Endocrinol (Lausanne) 2021 Feb 5;11:606530

III. Jiang TT, Shao TY, Ang WXG, Kinder JM, Turner LH, Pham G, Whitt J, Alenghat T, Way SS. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe 2017 Dec 13;22(6):809-816.e4. doi: 10.1016/j.chom.2017.10.013.

IV. Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol 2017 Oct;2(10):747-756. doi: 10.1016/S2468-1253(17):30147-4.

V. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020 Jan;51:102590. doi: 10.1016/j.ebiom.2019.11.051.

VI. Harsch IA, Konturek PC. The role of gut microbiota in obesity and type 2 and type 1 diabetes mellitus: new insights into "old" diseases. Med Sci (Basel) 2018 Apr 17;6(2):32. doi: 10.3390/medsci6020032.

VII. Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019;7(1):14. doi:10.3390/microorganisms7010014.

VIII. Cerdá B, Pérez M, Pérez-Santiago JD, Tornero-Aguilera JF, González-Soltero R, Larrosa M. Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health? Front Physiol 2016;7:51. doi:10.3389/fphys.2016.00051.

IX. Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et al. (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 2010;5(2):e9085.

X. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012 Oct;490(7418):55-60. doi: 10.1038/nature11450.

XI. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol 2017;17:219-32.

XII. Robert C. Pharmacologic and nonpharmacologic therapies for the gut microbiota in type 2 diabetes. Can J Diabetes 2019;43:224-231.

XIII. Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S. Negative effects of a high-fat diet on intestinal permeability: a review. Adv Nutr 2020 Jan 1;11(1):77-91.

XIV. Massey W, Brown M. The gut microbial endocrine organ in type 2 diabetes. Endocrinology 2021;162(2):1-14.

XV. Munro N. Gut microbiota: its role in diabetes and obesity. Diabetes & Primary Care 2016;18:1-6.

XVI. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013 Jun 6;498(7452):99-103. doi: 10.1038/nature12198.

XVII. Umirah F, Neoh CF, Ramasamy K, Lim SM. Differential gut microbiota composition between type 2 diabetes mellitus patients and healthy controls: A systematic review. Diabetes Res Clin Pract 2021;173:108689.

XVIII. Gurung M, Lia Z, Youa H, et al. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine 2020;51:102590

XIX. Natividad JM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res 2013;69:42e51.

XX. Reunanen J, Kainulainen V, Huuskonen L, et al. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl Environ Microbiol 2015;81:3655e62.

XXI. Sharma S, Tripathi P. Gut microbiome and type 2 diabetes: where we are and where to go?,The Journal of Nutritional Biochemistry 2019;63:101-108.

XXII. Caesar R. Pharmacologic and nonpharmacologic therapies for the gut microbiota in type 2 diabetes. Can J Diabetes 2019;43:224-231.

XXIII. Régnier M, Van Hul M, Knauf C, Cani PD. Gut microbiome, endocrine control of gut barrier function and metabolic diseases. J Endocrinol 2021;248(2):R67-R82.

XXIV. Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut 2014; 63:1513-1521.

XXV. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007;56:1761-72.

XXVI. Thaiss CA, Levy M, Grosheva I, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 2018;359:1376-83.

XXVII. Massier L, Chakaroun R, Tabei S, et al. Adipose tissue derived bacteria are associated with inflammation in obesity and type 2 diabetes. Gut 2020;0:1-11.

XXVIII. Udayappan SD, Kovatcheva-Datchary P, Bakker GJ, et al. Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS ONE 2017;12(11): e0181693.

XXIX. Anhê FF; Jensen BAH, Varin TV, et al. Type 2 diabetes influences bacterial tissue compartmentalisation in human obesity. Nat Metab 2020;2:233-242.

XXX. Creely SJ, McTernan PG, Kusminski CM, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 2007:292:e740e7.

XXXI. Lee H-M, Kim J-J, Kim HJ, Shong M, Ku BJ, Jo E-K. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes 2013;62:194.

XXXII. Scheithauer TPM, Rampanelli E, Nieuwdorp M, et al. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front Immunol 2020;11:571731.

XXXIII. Torres-Fuentes C, Schellekens H, Dinan TG, Cryan JF. The microbiota-gut-brain axis in obesity. Lancet Gastroenterol Hepatol 2017;2(10):747-756.

XXXIV. Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig 2018;9(1):5-12.

XXXV. Massey W, Brown M. The gut microbial endocrine organ un type 2 diabetes. Endocrinology 2021;162(2):1-14.

XXXVI. Koh A, De Vadder F, Kovatcheva-Datchary P, et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 2016;165:1332e45

XXXVII. Kimura I, Ozawa K, Inoue D, et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat Commun 2013;4, 1829.

XXXVIII. den Besten G, Bleeker A, Gerding A, van Eunen K, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 2015;64(7):2398-408.

XXXIX. Ahmad TR, Haeusler RA. Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat Rev Endocrinol 2019;15(12):701-712.

XL. Li R, Andreu-Sánchez S, Kuipers F, Fu J. Gut microbiome and bile acids in obesity-related diseases. Best Pract Res Clin Endocrinol Metab 2021;35(3):101493.

XLI. Pathak P, Xie C, Nichols RG, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 2018;68(4):1574-1588.

XLII. de Mello VD, Paananen J, Lindström J, et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep 2017;7:46337.

XLIII. Tuomainen M, Lindström J, Lehtonen M, et al. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr Diabetes 2018;8(1):35.

XLIV. Poesen R, Claes K, Evenepoel P, et al. Microbiota-derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol 2016;27(11):3479-3487.

XLV. Cohen LJ, Esterhazy D, Kim SH, et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 2017;549(7670):48-53.

XLVI. Roy S, Yuzefpolskaya M, Nandakumar R, Colombo PC, Demmer RT. Plasma trimethylamine-N-oxide and impaired glucose regulation: results from The Oral Infections, Glucose Intolerance and Insulin Resistance Study (ORIGINS). PLoS ONE 2020;15(1): e0227482

XLVII. Zhuang R, Ge X, Han L, et al. Gut microbe-generated metabolite trimethylamine N-oxide and the risk of diabetes: A systematic review and dose-response meta-analysis. Obes Rev 2019;20(6):883-894.

XLVIII. Liu W, Wang C, Xia Y, et al. Elevated plasma trimethylamine-N-oxide levels are associated with diabetic retinopathy. Acta Diabetol 2021;58:221-229.

XLIX. Flores-Guerrero JL, van Dijk PR, Connelly MA, et al. Circulating trimethylamine N-oxide is associated with increased risk of cardiovascular mortality in type-2 diabetes: Results from a Dutch Diabetes Cohort (ZODIAC-59). J Clin Med 2021;10:2269.

L. Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562:589-94.

LI. Stewart CJ, Ajami NJ, O’brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018;562:583-8.

LII. Kostic AD, Gevers D, Siljander H, Vatanen T, Hyotylainen T, Hamalainen AM, et al. The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 2015;17:260-73.

LIII. Vatanen T, Kostic AD, D’hennezel E, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 2016;165:842-53.

LIV. Davis-Richardson AG, Ardissone AN, Dias R, et al. Bacteroides dorei dominates gut microbiome prior to autoimmunity in Finnish children at high risk for type 1diabetes. Front Microbiol 2014;5:678.

LV. Akerman L, Ludvigsson J, Swartling U, Casas R. Characteristics of the prediabetic period in children with high risk of type 1 diabetes recruited from the general Swedish population-The ABIS study. Diabetes Metab Res Rev 2017;33.

LVI. Endesfelder D, Castel W, Ardissone A, et al. Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 2014;63:2006-2014.

LVII. Dedrick S, Sundaresh B, Huang Q, et al. The role of gut microbiota and environmental factors in type 1 diabetes pathogenesis. Front Endocrinol 2020;11:78.

LVIII. Vaarala O, Ilonen J, Ruohtula T, Pesola J, Virtanen SM, Harkonen T, et al. Removal of bovine insulin from cow’s milk formula and early initiation of beta-cell autoimmunity in the FINDIA pilot study. Arch Pediatr Adolesc Med 2012;166:608-14.

LIX. KnipM, Virtanen SM, Seppa K, Ilonen J, Savilahti E, Vaarala O, et al. Dietary intervention in infancy and later signs of beta-cell autoimmunity. N Engl J Med 2010; 363:1900-8.

LX. Funda DP, Kaas A, Bock T, Tlaskalova-Hogenova H, Buschard K. Gluten-free diet prevents diabetes in NOD mice. Diabetes Metab Res Rev 1999);15:323-7.

LXI. Hui Han, Yuying Li, Jun Fang, Gang Liu, Jie Yin, Tiejun Li, Yulong Yin. Gut microbiota and type 1 diabetes. Int J Mol Sci 2018;19:995.

LXII. Hummel S, Ziegler AG. Early determinants of type 1 diabetes: experience from the BABYDIAB and BABYDIET studies. Am J Clin Nutr 2011;94:1821S-3S.

LXIII. Zhou H, Sun L, Zhang S, Zhao X, Gang X, Wang G. Evaluating the causal role of gut microbiota in type 1 diabetes and its possible pathogenic mechanisms. Front Endocrinol 2020;11:125.

LXIV. Davis-Richardson AG, Triplett EW. A model for the role of gut bacteria in the development of autoimmunity for type 1 diabetes. Diabetologia 2015;58:1386-1393.

LXV. Giongo A, Gano KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011;5:82-91.

LXVI. Li X, Atkinson MA, Wen L, Duffy A. Factors influencing the gut microbiota, inflammation, and type 2 diabetes. J Nutr 2017;147(7):1468S-1475S.

LXVII. Li, X, Atkinson MA. The role for gut permeability in the pathogenesis of type 1 diabetes-a solid or leaky concept? Pediatr Diabetes 2015;16:485-92.

LXVIII. Bibbò S, Dore MP, Pes GM, Delitala G, Delitala AP. Is there a role for gut microbiota in type 1 diabetes pathogenesis? Annals of Medicine 2017;49:1:11-22. doi: 10.1080/07853890.2016.1222449.

LXIX. Koren O, Goodrig KJ, Cullender TC, Spor A, Laitinen K, Bäckhed HK, González A, Werner JJ, et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2017;150:470-480. doi: 10.1016/j.cell.2012.07.008

LXX. Gohir W, Whelan FJ, Surette MG, Moore C, Schertzer JD, Sloboda DM. Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother's periconceptional diet. Gut Microbes 2015;6:310-320. doi:10.1080/19490976.2015.1086056.

LXXI. Muñoz-Garach A, Diaz-Perdigones C, Tinahones FJ. Microbiota y diabetes mellitus tipo 2. Endocrinol Nutr 2016;63(10):560-568.

LXXII. Crusell M, Hansen TH, Nielsen T, Allin KH, Rühlemann MC, Damm P, Vestergaard H, Rørbye C, Jørgensen NR, et al. Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 2018;6:89.

LXXIII. Callaway LK, McIntyre HD, Barrett HL, Foxcroft K, Tremellen A, et al. Probiotics for the prevention of gestational diabetes mellitus in overweight and obese women. Findings from the SPRING double-blind randomized controlled trial. Diabetes Care 2019;42(3):364-371.

LXXIV. Ponzo V, Fedele D, Goitre I, et al. Diet-gut microbiota interactions and gestational diabetes mellitus. Nutrients 2019;11(2):330. doi:10.3390/nu11020330.

LXXV. Dabke K, et al. The gut microbiome and metabolic syndrome. Reviews series. J Clin Invest 2019;129(10):4050-4057.

LXXVI. Woodworth M, et al. Challenges in fecal donor selection and screening for fecal microbiota transplantation: a review. Gut Microbes 2017;8 (3):225-237.

LXXVII. Aron-Wisnewsky J, Clement K, et al. Fecal microbiota transplantation: a future therapeutic option for obesity/diabetes? Current Diabetes Reports 2019;19:51.

LXXVIII. Caesar R. Pharmacological and nonpharmacological therapies for the gut microbiota in type 2 diabetes. Can J Diabetes 2019;43:224-231.

LXXIX. Pushpanathan P, et al. Gut microbiota and its mysteries. Indian J Med Microbiol 2019;37(2):268-277.

LXXX. Antushevich H. Fecal microbiota transplantation in disease therapy. Clin Chim Acta 503 2020;90-98.

LXXXI. Ghorbani Y, et al. Manipulation of intestinal microbiome as potential treatment for insulin resistance and type 2 diabetes. European Journal of Nutrition 2021;60:2361-2379.

LXXXII. Rinninella E, Cintoni M, et al. Food components and dietary habits: keys for a healthy gut microbiota composition. Nutrients 2019;11:2393.

LXXXIII. Ojo O, Feng QQ, Ojo OO, Wang XH. The role of dietary fibre in modulating gut microbiota dysbiosis in patients with type 2 diabetes: a systematic review and meta-analysis of randomised controlled trials. Nutrients 2020 Oct 23;12(11):3239. doi: 10.3390/nu12113239.

LXXXIV. World Gastroenterology Organisation. Probióticos y Prebióticos, 2017. Disponible en: https://www.worldgastroenterology.org/guidelines/probiotics-and-prebiotics/probiotics-and-prebiotics-spanish.

LXXXV. Sun J, Buys NJ. Glucose- and glycaemic factor-lowering effects of probiotics on diabetes: A meta-analysis of randomised placebo-controlled trials. Br J Nutr 2016;115:1167e77.

LXXXVI. Leylabadlo HE, et al. From role of gut microbiota to microbial-based therapies in type 2 diabetes. Infection, Genetic and Evolution 2020;81:104268.

LXXXVII. He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics.Cell Biosci 2017 Oct 25;7-54.

LXXXVIII. Wierers G, Belkir L, et al. How probiotics affect the microbiota. Cell Infect Microbiol 2020; 9:454.

LXXXIX. Cao TTB, Wu K-C, et al. Effects of non insulin anti-hyperglicemic agents on gut microbiota: a systematic review on human and animal studies. Front Endocrinol 2020;11:573891.

XC. Hu R, et al. New insights into the links between anti-diabetic drugs and gut microbiota. Endocrine Connections 2021;10:R36-R42.

XCI. Pollak M. The effects of metformin on gut microbiota and the inmune system as research frontiers. Diabetologia 2017;60:1662-1667.

XCII. Montandom SA, et al. Effects of antidiabetic drugs on gut microbiota composition. Genes 2017;8:250.

XCIII. Pryor R, Martínez-Martínez D, et al. The role of the microbiome in drug response. Annu Rev Pharmacol Toxicol 2020;60:11.19

XCIV. Aaron I, Raelene E. Braxton D, et al. Diabetic autonomic neuropathy. Diabetes Care 2003;26:1553-1579.

XCV. Domínguez C, Flores C, Fuente G, et al. Neuropatía autonómica diabética: manifestaciones clínicas poco conocidas. Rev Arg Diab 2018;52(2):48-64.

XCVI. Selby A, et al. Pathophysiology, differential diagnosis, and treatment of diabetic diarrhea. Dig Dis Sci 2019;64:3385-3393. doi: 10.1007/s10620-019-05846-6.

XCVII. Zhao J, Brøndum Frøkjær J, Mohr Drewes A, et al. Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus. World J Gastroenterol 2006 May 14;12(18):2846-2857.

XCVIII. Vinik A, Erbas T. Diabetic autonomic neuropathyhandbook of clinical neurology 2013;117.

XCIX. Edwin K. Diabetic autonomic neuropathy of the gastrointestinal tract. Gastro Rev 2020;15(2):89-93. doi :10.5114/pg.2020.95554.

C. Kurniawan A, Suwandi B, Kholili U. Diabetic gastroenteropathy: a complication of diabetes mellitus. Acta Med Indones. Indones 2019;51(3).

CI. Zavaleta M, Gonzáles-Yovera J, Moreno-Marreros D. Diabetic gastroenteropathy: An underdiagnosed complication. World J Diabetes 2021 June 15;12(6):794-809.

CII. Phillips T, Rayner C, Jones K, et al. An update on autonomic neuropathy affecting the gastrointestinal. Current Diabetes Reports 2006;6:417-423.

CIII. Moshiree B, Potter M, Talley N. Epidemiology and pathophysiology of gastroparesis. Gastrointest Endoscopy Clin 2019;29:1-14. doi: 10.1016/j.giec.2018.08.010.

CIV. Bharucha A, Kudva Y, Prichard D. Diabetic gastroparesis. Endocrine Reviews 2019;40:1318-1352.

CV. Camilleri M, Bharucha A, Farrugia G. Epidemiology, mechanisms, and management of diabetic gastroparesis. Clinical Gastroenterology and Hepatology 2011;9:5-12.

CVI. Camilleri M. Diabetic gastroparesis. N Engl J Med 2007;356:820-9.

CVII. Bharucha A, Schaefer B, Cleary P. Delayed gastric emptying is associated with early and long-term hyperglycemia in type 1 diabetes mellitus. Gastroenterology 2015 August;149(2): 330-339. doi: 10.1053/j.gastro.2015.05.007.

CVIII. Vijayvargiya P, Jameie-Oskooei S, Camilleri M, et al. Association between delayed gastric emptying and upper gastrointestinal symptoms: a systematic review and meta-analysis. Gut 2018;0:1-10. doi:10.1136/gutjnl-2018-316405.

CIX. Du Y, Rayner C, Jones K. Gastrointestinal symptoms in diabetes: prevalence, assessment, pathogenesis, and management. Diabetes Care 2018;41:627-637. doi: 10.2337/dc17-1536.

CX. Shakil A, Church R, Shobha S. Gastrointestinal complications of diabetes. Am Fam Physician 2008;77(12):1697-1702.

CXI. Marathea C, Jonesa K, Wua T, et al. Gastrointestinal autonomic neuropathy in diabetes. Autonomic Neuroscience: Basic and Clinical 229;2020;102718.

CXII. Du YT, Rayner CK, Jones KL, Talley NJ, Horowitz M. Gastrointestinal symptoms in diabetes: prevalence, assessment, pathogenesis, and management. Diabetes Care 2018;41: 627-37. doi: 10.2337/dc17-1536.

CXIII. Melldgaard T, Keller J, Olessen A. Pathophysiology and management of diabetic gastroenteropathy. Therap Adv Gastroenterol 2019;12:1-17. doi: 10.1177/1756284819852047.

CXIV. Córdoba C, Rodil A, Cisternas D. Novedades acerca de los trastornos motores del esófago tras la reciente clasificación de chicago 4.0. Acta Gastr Latin 2021;51.

CXV. Camilleri M, Parkman HP, Shafi MA, Abell TL, Gerson L; American College of Gastroenterology. Clinical guideline: management of gastroparesis. Am J Gastroenterol 2013 Jan;108(1):18-37. doi: 10.1038/ajg.2012.373.

CXVI. Tack J, Carbone F, Rotondo A. Gastroparesis. Curr Opin Gastroenterol 2015 Nov;31(6):499-505. doi: 10.1097/MOG.0000000000000220.

CXVII. Krishnasamy S, Abell TL. Diabetic gastroparesis: principles and current trends in management. Diabetes Therapy 2018;9:1-42. doi: 10.1007/s13300-018-0454-9.

CXVIII. Petri M, Singh I, Baker C, Underkofler C, Rasouli N. Diabetic gastroparesis: an overview of pathogenesis, clinical presentation and novel therapies, with a focus on ghrelin receptor agonists. J Diabetes Complications 2021 Feb;35(2):107733. doi: 10.1016/j.jdiacomp.2020.107733.

CXIX. Parkman HP, Jones MP. Tests of gastric neuromuscular function. Gastroenterology 2009;36:1526-43. doi: 10.1053/j.gastro.2009.02.039.

CXX. Reddymasu SC, Sarosiek I, McCallum RW. Severe gastroparesis: medical therapy or gastric electrical stimulation. Clinical Gastroenterology and Hepatology 2010;8:117-24. doi: 10.1016/j.cgh.2009.09.010.

CXXI. Grover M, Farrugia G, Stanghellini V. Gastroparesis: a turning point in understanding and treatment. Gut 2019;68: 2238-50. doi: 10.1136/gutjnl-2019-318712.

CXXII. Goyal RK. Gastric emptying abnormalities in diabetes mellitus. New England Journal of Medicine 2021;384:1742-51. doi: 10.1056/nejmra2020927.

CXXIII. Horváth VJ, Izbéki F, Lengyel C, Kempler P, Várkonyi T. Diabetic gastroparesis: functional/morphologic background, diagnosis, and treatment options. Curr Diab Rep 2014;14(9):527. doi: 10.1007/s11892-014-0527-8.

CXXIV. Azpiroz F, Malagelada C. Diabetic neuropathy in the gut: pathogenesis and diagnosis. Diabetologia 2016 Mar;59(3):404-8. doi: 10.1007/s00125-015-3831-1.

CXXV. Owyang C. Phenotypic switching in diabetic gastroparesis: mechanism directs therapy. Gastroenterology 2011 Oct;141(4):1134-7. doi: 10.1053/j.gastro.2011.08.014.

CXXVI. Meldgaard T, Olesen SS, Farmer AD, et al. Enteropatía diabética: de la molécula al tratamiento basado en mecanismos. J Diabetes Res 2018;2018:3827301. doi:10.1155/2018/3827301.

CXXVII. Allan M. Goldstein, clinical aspects of neurointestinal disease: pathophysiology, diagnosis, and treatment. Developmental Biology 2016;417:217-228. doi: 10.1016/j.ydbio.2016.03.032.

CXXVIII. Yarandi SS, Srinivasan S. Trastornos de la motilidad gastrointestinal diabética y el papel del sistema nervioso entérico: estado actual y direcciones futuras. Neurogastroenterol Motil 2014;26(5):611-624. doi:10.1111/nmo.12330.

CXXIX. Concepción-Zavaleta MJ, Gonzáles-Yovera JG, Moreno-Marreros DM, et al. Gastroenteropatía diabética: una complicación infradiagnosticada. Diabetes Mundial J 2021;12(6):794-809. doi:10.4239/wjd.v12.i6.794.

CXXX. Papachristou S, Pafili K, Papanas N. AGE de la piel y neuropatía diabética. Trastorno BMC Endocr 2021;21(1):28. doi: 10.1186/s12902-021-00697-7.

CXXXI. Azpiroz F, Malagelada C. Diabetic neuropathy in the gut: pathogenesis and diagnosis. Diabetologia 2016 Mar;59(3):404-8. doi: 10.1007/s00125-015-3831-1.

CXXXII. Uranga-Ocio JA, Bastús-Díez S, Delkáder-Palacios D, García-Cristóbal N, et al. Neuropatía entérica asociada a diabetes mellitus. Rev Esp Enfer Dig 2015;107(6):366-373.

CXXXIII. Evers J, Jones JFX, O'Connell PR. Systematic review of animal models used in research of origins and treatments of fecal incontinence. Dis Colon Rectum 2017 Jun;60(6):614-626. doi: 10.1097/.

CXXXIV. Asociación Americana de Gastroenterología. Revisión técnica sobre el diagnóstico y tratamiento de la gastroparesia. Rev Gastroenterol Mex 2005;70(3).

CXXXV. Parkman HP, Hasler WL, Fisher RS; American Gastroenterological Association. Technical review on the diagnosis and treatment of gastroparesis. Gastroenterology 2004; 127:1592-1622.

CXXXVI. O’Grady G, Angeli TR, Du P, Lahr C, Lammers WJ, Windsor JA, Abell TL, Farrugia G, Pullan AJ, Cheng LK. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 2012; 143: 589-598.e1-3. doi: 10.1053/j.gastro.2012.05.036.

CXXXVII. Perri F, Bellini M, Portincasa P, Parodi A, Bonazzi P, Marzio L, Galeazzi F, Usai P, Citrino A, Usai-Satta P. (13)C-octanoic acid breath test (OBT) with a new test meal (EXPIROGer): Toward standardization for testing gastric emptying of solids. Dig Liver Dis 2010; 42: 549-553 doi: 10.1016/j.dld.2010.01.001.

CXXXVIII. Hornbuckle K, Barnett JL. The diagnosis and work-up of the patient with gastroparesis. J Clin Gastroenterol 2000;30:117-24.

CXXXIX. Defilippi G, Madrid S, Defilippi C. Electrogastrografía de superficie: una nueva técnica para el estudio de la motilidad gástrica en nuestro medio. Rev Méd Chile 2002; 130:1209-1216.

CXL. Kim D-Y, Delgado-Aros S, Camilleri M, Samsom M, Murray JA, O’Connor MK, Brinkman BH, Stephens DH, Lighuani SS, Burton DD. Noninvasive measurement of gastric accommodation in patients with idiopathic nonulcer dyspepsia. Am J Gastroenterol 2001;96: 3099-105.

CXLI. Corazza GR, Menozzi MG, Strocchi A, Rasciti L, Vaira D, Lecchini R, Avanzini P, Chezzi C, Gasbarrini G. The diagnosis of small bowel bacterial overgrowth. Reliability of jejunal culture and inadequacy of breath hydrogen testing. Gastroenterology 1990;98: 302-309.

CXLII. Ghoshal UC. How to interpret hydrogen breath tests. J Neurogastroenterol Motil 2011;17: 312-317. doi: 10.5056/jnm.2011.17.3.312.

CXLIII. Krishnan B, Babu B, Walker J, Walker AB, Pappachan JM. Gastrointestinal complications of diabetes mellitus. World J Diabetes 2013 June 15;4(3):51-63.

CXLIV. Kuzemko D, et al. Diabetic autonomic neuropathy of the gastrointestinal tract- etiopathogenesis, diagnosis, treatment and complications. Journal of Pre-Clinical and Clinical Research 2017;11(1):6-9. doi: 10.26444/jpccr/75140.

CXLV. Törnblom H. Treatment of gastrointestinal autonomic neuropathy. Diabetologia 2016;59:409-413. doi: 10.1007/s00125-015-3828-9.

CXLVI. Parkman HP, Fass R, Foxx-Orenstein AE. Treatment of patients with diabetic gastroparesis. Gastroenterol Hepatol 2010 Jun;6(6):1-16.

CXLVII. Elfström P, Sundström J, Ludvigsson JF. Systematic review with meta-analysis: associations between coeliac disease and type 1 diabetes. Aliment Pharmacol Ther 2014 Nov;40(10):1123-32.

CXLVIII. Vajravelu ME, Keren R, Weber DR, Verma R, De León DD, Denburg MR. Incidence and risk of celiac disease after type 1 diabetes: A population-based cohort study using the health improvement network database. Pediatr Diabetes 2018 Dec;19(8):1422-8.

CXLIX. Kaur N, Bhadada SK, Minz RW, Dayal D, Kochhar R. Interplay between type 1 diabetes mellitus and celiac disease: implications in treatment. Dig Dis 2018 Jul 25;36(6):399-408.

CL. Leeds JS, Hopper AD, Hadjivassiliou M, Tesfaye S, Sanders DS. High prevalence of microvascular complications in adults with type 1 diabetes and newly diagnosed celiac disease. Diabetes Care 2011 Oct;34(10):2158-63.

CLI. Rohrer TR, Wolf J, Liptay S, Zimmer K-P, Fröhlich-Reiterer E, Scheuing N, et al. Microvascular complications in childhood-onset type 1 diabetes and celiac disease: a multicenter longitudinal analysis of 56,514 patients from the german-austrian DPV database. Diabetes Care 2015 May;38(5):801-7.

CLII. Bakker SF, Tushuizen ME, von Blomberg ME, Mulder CJ, Simsek S. Type 1 diabetes and celiac disease in adults: glycemic control and diabetic complications. Acta Diabetol 2013 Jun;50(3):319-24.

CLIII. Bakker SF, Tushuizen ME, von Blomberg BME, Bontkes HJ, Mulder CJ, Simsek S. Screening for coeliac disease in adult patients with type 1 diabetes mellitus: myths, facts and controversy. Diabetol Metab Syndr 2016 Jul 29;8:51.

CLIV. Serena G, Camhi S, Sturgeon C, Yan S, Fasano A. The role of gluten in celiac disease and type 1 diabetes. Nutrients 2015 Aug 26;7(9):7143-62.

CLV. Verdu EF, Danska JS. Common ground: shared risk factors for type 1 diabetes and celiac disease. Nat Immunol 2018 Jul;19(7):685-95.

CLVI. Cohn A, Sofia AM, Kupfer SS. Type 1 diabetes and celiac disease: clinical overlap and new insights into disease pathogenesis. Curr Diab Rep 2014 Aug;14(8):517.

CLVII. De Melo EN, McDonald C, Saibil F, Marcon MA, Mahmud FH. Celiac disease and type 1 diabetes in adults: is this a high-risk group for screening? Canadian Journal of Diabetes 2015;39:513-9. doi: 10.1016/j.jcjd.2015.06.006.

CLVIII. Kizilgul M, Ozcelik O, Beysel S, et al. Screening for celiac disease in poorly controlled type 2 diabetes mellitus: worth it or not? BMC Endocrine Disorders 2017;17:62. doi:10.1186/s12902-017-0212-4.

CLIX. Zong G, Lebwohl B, Hu FB, et al. Gluten intake and risk of type 2 diabetes in three large prospective cohort studies of US men and women. Diabetologia 2018;61(10):2164-2173. doi:10.1007/s00125-018-4697-9.

CLX. Kylökäs A, Kaukinen K, Huhtala H, et al. Type 1 and type 2 diabetes in celiac disease: prevalence and effect on clinical and histological presentation. BMC Gastroenterology 2016;16:76. doi: 10.1186/s12876-016-0488-2.

CLXI. Valvano V, Longo S, Stefanelli G, et al. Celiac disease, gluten-free diet, and metabolic and liver disorders. Nutrients 2020;12:940. doi: 10.3390/nu12040940.

CLXII. Kabbani TA, Kelly CP, Betensky RA, et al. Patients with celiac disease have a lower prevalence of non-insulin-dependent diabetes mellitus and metabolic syndrome. Gastroenterology 2013;144(5):912-917.e1. doi: 10.1053/j.gastro.2013.01.033.

CLXIII. Sánchez-Cruz JC, Cabrera-Rode E, Sorell-Gómez L, et al. Celiac disease associated antibodies in persons with latent autoimmune diabetes of adult and type 2 diabetes. Autoimmunity 2007; 40(2): 103-107. doi: 10.1080/08916930601118825.

CLXIV. Haupt-Jorgensen M, Holm LJ, Josefsen K, et al. Possible prevention of diabetes with a gluten-free diet. Nutrients 2018;10:1746. doi:10.3390/nu10111746.

CLXV. Kumar J, Kumar M, Pandey R, et al. Physiopathology and management of gluten-induced celiac disease. Journal of Food Science 2017;82(2):270-277. doi: 10.1111/1750-3841.13612.

CLXVI. Serena G, Cambi S, Sturgeon C, et al. The role of gluten disease and type 1 diabetes. Nutrients 2015;7:7143-7162.

CLXVII. Mahmud FH, Clarke AB, Joachim KC, et al. Screening and treatment outcomes in adults and children with type 1 diabetes and asymptomatic celiac disease: The CD-DIET Study. Diabetes Care 2020 Jul;43(7):1553-1556.

CLXVIII. Weiss B, Pinhas-Hamiel O. Celiac disease and diabetes: when to test and treat. J Pediatr Gastro Nutr 2017;64:175-179.

CLXIX. Ramírez-Benítez AI, Miranda-Ojeda MC, Ferreira L, et al. Enfermedad celíaca y diabetes mellitus tipo 1: asociación y características clínicas. Rev Virtual Soc Parag Med. 2014;1(1):08-017.

CLXX. Tanpowpong P, Broder-Fingert S, Katz AJ, Camargo CA Jr. Features of children with positive celiac serology and type 1 diabetes mellitus. Pediatr Int 2015 Oct;57(5): 1028-30.

CLXXI. Akirov A, Pinhas-Hamiel O. Co-occurence of type 1 diabetes mellitus and celiac disease. World J Diabetes 2015 Jun 10;6(5):707-14.

CLXXII. Real Delor RE, Ortz Gaona NR, Escurra-Amarilla LA. Enfermedad celíaca silente en pacientes con diabetes mellitus tipo 1. Rev Cubana Med 2016;55(3).

CLXXIII. Han Y, Chen W, Li P, Ye J. Association between celiac disease and risk of any malignacncy and gastrointestinal malignancy. A meta analysis. Medicine (Baltimore) 2015 Sep;94(38):e1612.

CLXXIV. Tsouka A, Mahmud FH, Marcon MA. Celiac disease alone and associated with type 1 diabetes mellitus. J Pediatr Gastro Nutr 2015;61:297-302.

CLXXV. Rohrer TR, Wolf J, Liptay S, et al. Microvascular complications in childhood-onset type 1 diabetes and celiac disease: a multicenter longitudinal analysis of 56,514 patients from the german-austrian DPV Database. Diabetes Care 2015 May;38(5):801-807.

CLXXVI. Pitocco D, Giubilato S, Martini F, Zaccardi F, et al. Combined atherogenic effects of celiac disease and type 1 diabetes mellitus. Atherosclerosis 2011 Aug;217(2):531-5.

Published

2023-04-01

How to Cite

Maldini, A. C., Calvo, M. L., Schlinder, A., Ojeda Heredia, V., De Marco, R., Esquivel Forlin, G. M., González, J. P., Apoloni, S. B., Burgos, M., López, C. E., Fábregues, S., Roccatagliata, L. E., Ramos, S., García, L. A., & Milikowski, L. M. (2023). IXX Conference of the Graduate Committee of the Argentine Diabetes Society. Topic: “Diabetes mellitus and non-classical organs”. Table 2: Gastrointestinal pathologies and diabetes mellitus. Journal of the Argentine Society of Diabetes, 57(1), 34–53. https://doi.org/10.47196/diab.v57i1.680

Most read articles by the same author(s)

1 2 > >>