TABLE 1: NEW MEDICINES IN TYPE 1 DIABETES MELLITUS
DOI:
https://doi.org/10.47196/diab.v49i3.633Keywords:
new medications, type 1 diabetes mellitusAbstract
Where is the investigation going? What are the weaknesses of current drugs? What characteristics should new medicines have?
References
I. Chillarón JJ, Goday A, Pedro-Botet J. Metabolic syndrome, type 1 diabetes mellitus and insulin resistance. Med. Clin. (Barc.) 2008; 130 :466-71.
II. Chillarón JJ, Flores Le-Roux JA, Benaiges D, Botet JP. Type 1 diabetes, metabolic syndrome and cardiovascular risk. Metabolism Clinical and Experimental 2014; 63: 181-187.
III. Hamilton J, Cummings E, Zdravkovic V, et al. Metformin as an adjunct therapy in adolescents with type 1 diabetes and insulin resistance: a randomized controlled trial. Diabetes Care 2003; 26:138-143.
IV. Timar R, Timar B, Degeratu D, et al. Metabolic syndrome, adiponectin and proinflammatory status in patients with type1 diabetes mellitus. J. Int. Med. Res. 2014; 42:1131-1138.
V. Teupe B, Bergis K. Epidemiological evidence for “double diabetes”. Lancet 1991; 337:361-2.
VI. Laing SP, Swerdlow AJ, Slater SD, et al. The British Diabetic Association Cohort Study II: cause-specific mortality in patients with insulin-treated diabetes mellitus. Diabet Med 1999; 16:46671.
VII. Bailey CJ. Metformin: effects on micro and macrovascular complications in type 2 diabetes. Cardiovasc. Drugs Ther. 2008; 22: 215-224.
VIII. Vella S, Buetow L, Royle P, et al. The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia 2010; 53:809-820.
IX. Cong Liu, Dan Wu, Xuan Zheng, Ping Li, Ling Li. Efficacy and safety of metformin for patients with type 1 diabetes mellitus: a meta-analysis. Diabetes Technology & Therapeutics 2015;17:142-
X. Sanblad S, Kroon M, Aman J. Metformin as additional therapy in adolescents with poorly controlled type 1 diabetes: randomised placebo-controlled trial with aspects on insulin sensitivity. Eur. J. Endocrinol. 2003; 149:323-329.
XI. Pang TT, Narendran P. Addressing insulin resistance in type 1 diabetes. Diabet. Med. 2008; 25:1015-1024.
XII. Cervera A, Wajcberg E, Sriwijitkamol A, Fernandez M, Zuo P, Triplitt C, Musi N, DeFronzo RA & Cersosimo E. Mechanism of action of exenatide to reduce postprandial hyperglycemia in type 2 diabetes. American Journal of Physiology. Endocrinology and Metabolism 2008, 294 E846-E852.
XIII. Holst JJ. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007; 87:1409-1439.
XIV. Madsbad S, Krarup T, Deacon CF, Holst JJ. Glucagon-like peptide receptor agonists and dipeptidyl peptidase-4 nhibitors in the treatment of diabetes: a review of clinical trials. Curr Opin Clin. Nutr. Metab. Care. 2008 Jul; 11(4):491-9.
XV. Zander M, Madsbad S, Madsen JL, Holst JJ. Effect of 6-week course of glucagonlike peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel. Lancet. 2002 Mar 9; 359(9309):824-30.
XVI. Vilsbøll T, Toft-Nielsen MB, Krarup T, Madsbad S, Dinesen B, Holst JJ. Evaluation of b-cell secretory capacity using glucagonlike peptide 1. Diabetes Care 2000; 23:807-812
XVII. Kielgast U, Holst JJ, Madsbad S. Treatment of type 1 diabetic patients with glucagon-like peptide-1 (GLP-1) and GLP-1R agonists. Curr. Diabetes Rev. 2009; 5:266-275.
XVIII. Behme MT, Dupré J, McDonald TJ. Glucagon-like peptide 1 improved glycemic control in type 1 diabetes. BMC Endocr. Disord. 2003; 3:3.
XIX. Creutzfeldt WO, Kleine N, Willms B, Orskov C, Holst JJ, Nauck MA. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagonlike peptide I(7-36) amide in type I diabetic patients. Diabetes Care 1996; 19:580-586.
XX. Raman VS, Mason KJ, Rodriguez LM, et al. The role of adjunctive exenatide therapy in pediatric type 1 diabetes. Diabetes Care 2010; 33:1294-1296.
XXI. Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satietyand suppresses energy intake in humans. J. Clin. Invest. 1998; 101:515–520.
XXII. Gutzwiller JP, Göke B, Drewe J, et al. Glucagon-like peptide-1: a potent regulator of food intake in humans. Gut 1999; 44:81-86.
XXIII. Dupré J, Behme MT, McDonald TJ. Exendin-4 normalized postcibal glycemic excursions in type 1 diabetes. J. Clin. Endocrinol. Metab. 2004; 89:3469-3473.
XXIV. Kielgast U, Krarup T, Holst JJ, Madsbad S. Four weeks of treatment with liraglutide reduces insulin dose without loss of glycemic control in type 1 diabetic patients with and without residual β-cell function. Diabetes care, 2011, 34 (7), 1463-1468.
XXV. Varanasi A, Bellini N, Rawal D, Vora M, Makdissi A, Dhindsa S, Dandona P. Liraglutide as additional treatment for type 1 diabetes. European Journal of Endocrinology. 2011, 165(1), 77-84.
XXVI. Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF. Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes, 19(9), 644-655, 1970.
XXVII. Raman VS, Mason KJ, Rodriguez ML, Hassan K, Yu X, Bomgaars L, Heptulla RA. The role of adjunctive exenatide therapy in pediatric type 1 diabetes. Diabetes Care 33:1294-1296, 2010.
XXVIII. Novo Nordisk completes second and final phase 3º trial with liraglutide as adjunct therapy to insulin for people with type 1 diabetes (NN9211). In: http://globenewswire.com/news-release/2015/08/24/762981/0/en/Novo-Nordisk-completes-secondand-final-phase-3a-trial-with-liraglutide-as-adjunct-therapy-toinsulin-for-people-with-type-1-diabetes-NN9211.html. Acceso: septiembre 2015.
XXIX. Na-Hyung K, Taeyang Y, Dae HL. The nonglycemic actions of DPP-
Bio Med Research International. 2014. 1-2.
XXX. Bilal O, Bo A. Pleiotropic mechanism for the glucose lowerig action Of DPP-4 Inhibitors. Diabetes. 2014. 63,1-2.
XXXI. Zazueta A. Polipéptido insulinotrópico dependiente de glucosa y péptido semejante al glucagón tipo 1: acciones fisiológicas e implicaciones en la diabetes tipo 2 y la obesidad. Revista de Endocrinología y Nutrición. 2007. 15, 3: 156-164.
XXXII. Bosi E. Time for testing incretin therapies in early type 1 diabetes? Journal Clinical Endocrinol. Metab. 2010, 95(6):2607-2609.
XXXIII. Drucker DJ. The biology of incretin hormones. 2006. Cell Metab. 3:153-165.
XXXIV. Zhao Y, Yang L,Wang X, et al. The new insights from DPP-4 inhibitors: their potential immune modulatory function in autoimmune diabetes. Diabetes/metabolism research and reviews.2014:30:646-53.
XXXV. Juang J, Kuo CH, Liu Y, et al. Effects of dipeptidyl peptidase-4 inhibition with MK-0431 on syngeneic mouse islet transplantation. International Journal of Endocrinology 2014. 1-6.
XXXVI. Shah P, Amin Ardestani A, Dharmadhikari G, et,al. The DPP-4 inhibitor linagliptin restores. Cell function and survival in human isolated islets through GLP-1 stabilization J. Clin. Endocrinol. Metab., 2013, 98(7):1163-1172.
XXXVII. Lee M. Treatment of autoimmune diabetes by inhibiting the initial event. Immune Network 2013. 13, 5: 194-198.
XXXVIII. Zhao Y, Yang L, Xiang Y, et al. Dipeptidyl peptidase 4 inhibitor sitagliptin maintains cell function in patients with recent-onset latent autoimmune diabetes in adults: one year prospective study. J. Clin. Endocrinol. Metab. 2014, 99(5):876-880.
XXXIX. Johansen O, Boehm B, Gril V, et al. C-Peptide levels in latent autoimmune diabetes in adults treated with linagliptin vs glimepiride. Exploratory results from a 2-year double-dlind, randomized, controlled study. Diabetes Care 2014. 37:11-12.
XL. Kuhtreiber W, Washer S, Zhao H. Low levels of C-peptide have clinical significance for established type 1 diabetes. Diabetic Medicine 2015, 1346-1353.
XLI. DeGeeter M, Williamson B. Alternative agents in type 1 diabetes in addition to insulin therapy: metformin, alpha-glucosidase inhibitors, pioglitazone, GLP-1 agonists, DPP-IV inhibitors, and SGLT-2 inhibitors. Journal of Pharmacy Practice 2014.1-16.
XLII. Kutoh E.Sitagliptin is effective and safe as add-on to insulin in patients with absolute insulin deficiency: a case series. Journal of Medical Case Reports 2011, 5:11.
XLIII. Garg SK, Moser EG, Bode BW, et al. Effect of sitagliptin on postprandial glucagon and GLP-1 levels in patients with type 1 diabetes: investigator-initiated, double-blind, randomized, placebo controlled trial. Endocrinología Práctica. 2013 19(1):19-28.
XLIV. Ellis S, Moser E, Snell-Bergeon J. Effect of sitagliptin on glucose control in adult patients with type 1 diabetes: a pilot, doubleblind, randomized, crossover trial. Diabetic Medicine. 2011. 1176 -1181.
XLV. Giampietro O, Giampietro C, Bartola LD, et al. Sitagliptin as add on therapy in insulin deficiency: biomarkers of therapeutic efficacy and respond differently in type 1 and type 2 diabetes. Drug Design, Development and Therapy 2013; 7:99-104.
XLVI. Farngren J, Persson M, Schwizer A, et al. Vidagliptin reduces glucagon during hyperglycemia and sustains glucagon counterregulation during hypoglycemia in type 1 diabetes. J. Clin. Endocrinol. Metab. 2012; 97(10)3799-3806.
XLVII. Henry RR, Rosenstock J, Edelman S, et al. Exploring the potential of the SGLT2 inhibitor dapagliflozin in type 1 diabetes: a randomized, double-blind, placebo controlled pilot study. Diabetes Care 2015; 38:412-419.
XLVIII. Pieber TR, Famulla S, Eilbracht J, et al. Empagliflozin as adjunct to insulin in patients with type 1 diabetes: a 4-week, randomized, placebo-controlled trial (EASE-1). Diebetes, Obesity and Metabolism 2015, Oct.; 17(10):928-35.
XLIX. Perkins BA, Cherney DZI, Partridge H, et al. Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care 2014; 37:1480-1483.
L. Cherney DZI, Perkins BA. Sodium-glucose cotransporter 2 inhibition in type 1 diabetes: simultaneus glucose lowering and renal protection?. Can. J. Diabetes 38, 2014, 356-363.
LI. Cherney DZI, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014 Feb 4; 129(5):587-97.
LII. Cherney DZI, Perkins BA, Soleymanlou N, et al. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovascular Diabetology 2014,13:28.
LIII. Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care 2015; 38:1638-1642.
LIV. Hattersley AT, Thorens B. Type 2 diabetes, SGLT2 inhibitors, and glucose secretion. N. Engl. J. Med. 373; 10. September 3, 2015.
LV. Taylor SI, Blau JE, Rother KI. SGLT2 inhibitors may predispose to ketoacidosis. J. Clin. Endocrinol. Metab. 100: 2849-2852, 2015.
LVI. Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med. 2015 May; 21(5):512-7.
LVII. Atkinson MA, Maclaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N. Engl. J. Med. 1994; 331: 1428-1436.
LVIII. The Diabetes control and Complications Trial Research Group: the effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 1993; 329: 997-986.
LIX. Weyer C, Gottlieb A, Kim DD, Lutz K, et al. Pramlintide reduces postprandial glucose excursions when added to regular insulin or insulin lispro in subjects with type 1 diabetes. Diabetes Care 2003; 26 N° 11: 3074-3079.
LX. Heptula RA, Rodriguez LM, Bomgaars L, Haymond MW. The role of amylin and glucagon in the dampening of glycemic excursions in children with type 1 diabetes. Diabetes 2005; 54: 11001107.
LXI. Vella A, Lee JS, Camilleri M, Szarka LA, et al. Effects of pramlintide, and amylin analogue, on gastric emptyng in type 1 and 2 diabetes mellitus. Neurogastroenterol. Mot. 2002; 14: 123-131.
LXII. Alfonso JE, Sierra Ariza ID. Nuevas terapias en diabetes: más allá de la insulina inyectable y de los antidiabéticos orales. Rev. Assoc. Med. Bras. 2008; 54 (5): 447-454.
LXIII. Bailey RJ, Walker CS, Ferner AH, et al. Pharmacological characterization of rat amylin receptors: implications for the identication of amylin receptor subtypes. British Journal of Pharmacology 2012; 166: 151-167.
LXIV. Riddle MC, Drucker D. Emerging therapies mimicking the effects of amylin and glucagon-like peptide 1. Diabetes Care 2006; 29: 435-449.
LXV. Schmitz O, Brock B, Rungby J. Amylin agonist: a novel approach in the treatment of diabetes. Diabetes 2004; 53 (3): S233- S238.
LXVI. Fixed ratio dosing of pramlintide with regular insulin before a standard meal in patients with type 1 diabetes. Research letter. Diabetes, Obesity and Metabolism 2015; 17: 904-907.
LXVII. Jansson JO, Palsdottir V- Brain. Il-6. Where amylin and GLP-1 antiobesity signaling congregate. Diabetes 2015; 64: 1498-1499.
LXVIII. Research letter: safety of pramlintide added to mealtime insulin in patients with type 1 or type 2 diabetes: a large observational study. Diabetes, Obesity and Metabolism 2010; 12: 548-551.
LXIX. Akkati S, Sam KG, Tungha G. Emergence of promising therapies in diabetes mellitus. J. Clin. Pharmacol. 2011; 51: 796-804.
LXX. Edelman S, Garg S, Frias J, et al. A double-blind, placebo-controlled trial assessing pramlintide treatment in the setting of intensive insulin therapy in type 1 diabetes. Diabetes Care 2006; 29: 2189-2195.
LXXI. Whitehouse F, Kruger AF, Fineman M, et al. A randomized study and open-label extension evaluating the long- term efficacy of pramlintide as an adjunt to insulin therapy in type 1 Diabetes. Diabetes Care 2002; 25: 724-730.
LXXII. Thompson RG, Peterson J, Gottlieb A, Mullane J. Effects of pramlintide, an analog of human amylin, on plasma glucose profiles in patients with IDDM. Diabetes 1997;46: 632-637.
LXXIII. Weinzimer SA, Sherr JL, Cenginz E, et al. Effect of pramlintide on prandial glycemic excursions during closed-loop control in adolescents and young adults with type 1 diabetes. Diabetes Care 2012; 35: 1994-1999.
LXXIV. Marrero DG, Crean J, Zhang B, Kellmeyer T, et al. Effect of adjunctive pramlintide treatment on treatment satisfaction in patients with type 1 diabetes. Diabetes Care 2007; 30: 210-216.
LXXV. Lee N, Norris SL, Thakurta S. Efficacy and harms of the hypoglycemic agent pramlintide in diabetes mellitus. Annals of Family Medicine 2010; 8 N° 6: 542-549.
LXXVI. DeGeeter M, Williamson B. Alternative agents in type 1 diabetes in addition to insulin therapy: metformin, alpha-glucosidase inhibitors, pioglitazone, GLP-1 agonists, DPP-IV inhibitors, and SGLT-2 inhibitors. Journal of Pharmacy Practise 2014; 1-16.
LXXVII. Dash S, Crisp S; Hartnell S, et al. Successful use of acarbose to manage post-prandial glycaemia in two patients with type 1 diabetes on continuous subcutaneous insulin infusion. Diabetes Research and Clinical Practice 2012; 95: e49-e51.
LXXVIII. Rabasa-Lhoret R, Burelle Y, Ducros F, et al. Use of an alpha-glucosidase inhibitor to maintain glucose homoeostasis during postprandial exercise in intensively treated type 1 diabetic subjects. Diabetic Medicine 2001; 18: 739-744.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 on behalf of the authors. Reproduction rights: Argentine Diabetes Society
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Dirección Nacional de Derecho de Autor, Exp. N° 5.333.129. Instituto Nacional de la Propiedad Industrial, Marca «Revista de la Sociedad Argentina de Diabetes - Asociación Civil» N° de concesión 2.605.405 y N° de disposición 1.404/13.
La Revista de la SAD está licenciada bajo Licencia Creative Commons Atribución – No Comercial – Sin Obra Derivada 4.0 Internacional.
Por otra parte, la Revista SAD permite que los autores mantengan los derechos de autor sin restricciones.